Training and Testing of Recommender Systems on Data Missing Not at Random

Harald Steck

Bell Labs, Murray Hill
Real-World Problem:

Make personalized recommendations to users that they find “relevant”:

1. from all items (in store)
2. pick a few for each user
3. with the goal: each user finds recommended items “relevant”.

eg “relevant” = 5-star rating in Netflix data

Define Data Mining Goal (how to test):

- off-line test with historical rating data
- high accuracy
 - RMSE on observed ratings (popular)
 - nDCG on observed ratings [Weimer et al. ‘08]

Find (approximate) solution to Goal defined above:

- choose model(s)
- appropriate training-objective function
- efficient optimization method
Overview

Real-World Problem:
Make personalized recommendations to users that they find “relevant”:
1. from all items (in store)
2. pick a few for each user
3. with the goal: each user finds recommended items “relevant”.

eg “relevant” = 5-star rating in Netflix data

Define Data Mining Goal (how to test):
- off-line test with historical rating data
- high accuracy
 - RMSE on observed ratings (popular)
 - nDCG on observed ratings [Weimer et al. ‘08]

Find (approximate) solution to Goal defined above:
- choose model(s)
- appropriate training-objective function
- efficient optimization method
Data

users \(u \)

items \(i \)

(unknown) complete

rating matrix
Data

(users u) →

(unknown) complete
rating matrix

↓

items i

→

observed ratings
(e.g., 1% in Netflix data)
Data

- (General) missing-data mechanism cannot be ignored [Rubin ’76; Marlin et al. ’09,’08,’07].

- Missing at random [Rubin ’76; Marlin et al. ’09,’08,’07]:
 - Rating value has **no** effect on probability that it is missing
 - Correct results obtained by ignoring missing ratings.
Ratings are missing not at random (MNAR): Empirical Evidence

Graphs from [Marlin & Zemel ‘09]:

Survey: ask users to rate a random list of items: approximates complete data

Typical Data: users are free to choose which items to rate -> available data are MNAR: instead of giving low ratings, users tend to not give a rating at all.
Overview

Real-World Problem:

Make personalized recommendations to users that they find “relevant”:

1. from all items (in store)
2. pick a few for each user
3. with the goal: each user finds recommended items “relevant”.

Define Data Mining Goal (how to test):

- off-line test with historical rating data
- high accuracy
 - RMSE, nDCG, ... on observed ratings
 - Top-k Hit-Rate, ... on all items

Find (approximate) solution to Goal defined above:

- choose model(s)
- appropriate training-objective function
- efficient optimization method
Test Performance Measures on MNAR Data

- many popular performance measures cannot readily deal with missing ratings
- only a few from among all items can be recommended
- **Top-k Hit Rate w.r.t. all items:**

 - \[
 \frac{\text{\# relevant items in top } k}{\text{\# relevant items}} = \text{recall}
 \]

 - \[
 \frac{\text{\# relevant items in top } k}{k} = \text{precision}
 \]
Test Performance Measures on MNAR Data

- most popular performance measures cannot readily deal with missing ratings
- only a few from among all items can be recommended
- **Top-k Hit Rate w.r.t. all items:**

\[
\text{TOPK}_u(k) = \frac{\# \text{ relevant items in top } k}{\# \text{ relevant items}} = \text{recall}
\]

\[
= \frac{\# \text{ relevant items in top } k}{k} = \text{precision}
\]

- when comparing different rec. sys. on fixed data and fixed \(k \): recall \(\propto \) precision
- under mild assumption:
 recall on MNAR data = unbiased estimate of recall on (unknown) complete data

Assumption: The relevant ratings are missing at random.
Test Performance Measures on MNAR Data

Top-\(k\) Hit-Rate:
- depends on \(k\)
- ignores ranking

normalized w.r.t. # items
Test Performance Measures on MNAR Data

Top-k Hit-Rate:
- depends on k
- ignores ranking

Area under TOPK curve (ATOP):
- independent of k
- in $[0,1]$, larger is better
- captures ranking of all items
- agrees with area under ROC curve in leading order if # relevant items $<<$ # items
- unbiased estimate from MNAR data for unknown complete data under above assumption

![Diagram showing the area under TOPK curve (ATOP)]
Overview

Real-World Problem:

Make personalized recommendations to users that they find "relevant":

1. from all items (in store)
2. pick a few for each user
3. with the goal: each user finds recommended items "relevant".

Define Data Mining Goal (how to test):
- off-line test with historical rating data
- high accuracy
- TOPK, ATOP, ... on all items

Find (approximate) solution to Goal defined above:
- choose model(s)
- appropriate training objective function
- efficient optimization
Low-rank Matrix Factorization Model

Matrix of predicted ratings:

\[\hat{R} = r_m + PQ^\top \]

- rating offset: \(r_m \)
- rank of matrices \(P, Q \): dimension of low-dimensional latent space, e.g. \(d_0 = 50 \)
Training Objective Function: AllRank

minimal modification of usual least squares problem:

- account for all items per user: observed and missing ratings $R_{i,u}^{o&i}$
- imputed value for missing ratings: r_m
- create balanced training set: weights (1 if observed, w_m if missing)
- (usual) regularization of matrix elements: λ

$$
\sum_{all \ u} \sum_{all \ i} W_{i,u} \left\{ \left(R_{i,u}^{o&i} - (r_m + PQ^\top)_{i,u} \right)^2 + \lambda \left(\sum_{d=1}^{d_0} P_{i,d}^2 + Q_{u,d}^2 \right) \right\}
$$

Efficient Optimization:

- gradient descent by alternating least squares
- tuning parameters r_m, w_m, λ have to be optimized as well (eg w.r.t. ATOP)
Experimental Results on Netflix Data: Imputed Rating Value r_m

- optimum for imputed value exists
- optimal $r_m \approx 2$
- optimal r_m may be interpreted as mean of missing ratings
- exact imputation value < 2 is not critical
- imputed value $<$ observed mean
Experimental Results on Netflix Data: Weight of Missing Ratings w_m

- $w_m=1$: standard SVD (plus penalty term), like in Latent Semantic Analysis
- $w_m=0.005$ is optimal; compare to fraction of observed ratings $= 0.01$
- $w_m=0$: ignores missing ratings, and is worst w.r.t. ATOP
Experimental Results on Netflix Data: Top-k Hit-Rate

Comparison of Approaches:

- **AllRank** (RMSE = 1.106)
- **ignore missing ratings** (RMSE = 0.921)
Experimental Results on Netflix Data: Top-k Hit-Rate

Comparison of Approaches:

- AllRank (RMSE = 1.106)
- Ignore missing ratings (RMSE = 0.921)

Zoomed into top 2%:
Experimental Results on Netflix Data: Top-k Hit-Rate

Comparison of Approaches:

- AllRank (RMSE = 1.106)
- Ignore missing ratings (RMSE = 0.921)
- Integrated model [Koren ’08] (RMSE = 0.887)
 (trained to minimize RMSE)

39 % 50 % larger Top-k Hit-Rate: AllRank vs. integrated model
Experimental Results on Netflix Data: Top-k Hit-Rate

Comparison of Approaches:

- **AllRank** (RMSE = 1.106)
- ignore missing ratings (RMSE = 0.921)
- integrated model [Koren ’08] (RMSE = 0.887) (trained to minimize RMSE)

Large increase in Top-k Hit-Rate when accounting also for missing ratings when training on MNAR data.

39 % 50 % larger Top-k Hit-Rate: AllRank vs. integrated model
Related Work

explicit feedback data (ratings):

- improved RMSE on observed data also increases Top-k Hit-Rate on all items [Koren ‘08]

- ratings are missing not at random:
 - improved models: conditional RBM, NSVD1/2, SVD++ [Salakhutdinov ’07; Paterek ’07; Koren ‘08]
 - test on “complete” data, train multinomial mixture model on MNAR data [Marlin et al. ’07,’09]

implicit feedback data (clickstream data, TV consumption, tags, bookmarks, purchases, ...):

- [Hu et al. ’07; Pan et al. ’07]:
 - binary data, **only positives are observed** -> missing ones assumed negatives
 - trained matrix-factorization model with weighted least-squares objective function
 - claimed difference to **explicit feedback data:** latter provides **positive and negative** observations
Conclusions and Future Work

- considered explicit feedback data missing not at random (MNAR)

- test performance measures:
 - close to real-world problem
 - unbiased on MNAR data (under mild assumption)
 - (Area under) Top-k Hit Rate, ...

- efficient surrogate objective function for training:
 - AllRank: accounting for missing ratings leads to large improvements in Top-k Hit-Rate

Future Work:

- better test performance measures, training objective functions and models

- results obtained w.r.t. RMSE need not hold w.r.t. Top-k Hit-Rate on MNAR data, eg collaborative filtering vs content based methods