Fast Online Learning through Offline Initialization for Time-sensitive Recommendation

Bee-Chung Chen, Deepak Agarwal, Yahoo! Research
Pradheep Elango, Yahoo! Labs
Cold Start, a Challenge in Recommender Systems

• Recommender systems are useful applications
 – Movies, news stories, products, etc.
 – Goal: For each user, provide a list of items he/she might like
 – Common approach: Build a model to predict the rating that a user would give to an unrated item based on past activities
 • Recommend items with the highest predicted ratings
 • Ratings can be explicit or implicit, e.g., click or no-click
 – This approach is quite successful when there are enough past ratings for each user and each item
 • Collaborative filtering, e.g., matrix factorization
 • Fine-grained models
 – Each item/user has a set of “factors” learned using rating data

• It is challenging to make good recommendations for new users or new items (cold-start problem)
Today Module is about what’s new (and interesting) today

Recommend stories to each user visit to maximize engagement (e.g., clicks)

The pool of candidate stories is highly dynamic; stories have short lifetimes

Success depends highly on the ability of recommending new stories
Time-sensitive Recommendation

• Examples of time-sensitive items
 – News stories, trending queries, tweets, updates, events …

• Real-time data pipeline that continuously collects new ratings (clicks) on new items

• Modeling requirements:
 – Fast learning: Learn good models for new items using little data
 • Good initial guess (without ratings on new items)
 • Fast convergence
 – Fast computation: Build good models using little time
 • Efficient
 • Scalable
 • Parallelizable
Potential Solutions (1)

- Offline feature-based regression
 - Feature vector x_i of user i: Age, gender, location, #past visits, …
 - Feature vector x_j of item j: Category, source, entities, keywords, …
 - Build a model $h(x_i, x_j)$ that predicts rating based on x_i and x_j
 - E.g., $y_{ij} \sim h(x_i, x_j) = \sum_{k \ell} A_{k \ell} \cdot x_{ik} x_{j \ell} = x_i' A x_j$

- Users having the same feature vectors get the same recommendation
 - Usually **not** as accurate as collaborative filtering methods

Potential Solutions (2)

• Collaborative filtering methods
 – Model the behavior of each individual user/item
 – Similarity-based methods
 • Online methods: Incremental similarity updates [Papagelis 2005], clustering methods [Das 2007], etc.
 • Usually not as good as factorization methods [Koren 2009]
 – Factorization methods
 • Model each user (item) as a vector of factors (learned from data)
 \[y_{ij} \sim \sum_k u_{ik} v_{jk} = u_i' v_j \]
 \[Y \sim UV \]
 \[M \times N \times M \times K \times K \times N \]
 \[K \ll M, N \]
 • No factor for new items/users, and expensive to rebuild the model!!
 – Many hybrid methods for cold start
 • See [Adomavicius & Tuzhilin, TKDE, 2005] for a survey
 • Little attention to fast online procedures
Potential Solutions (3)

• Online regression for item cold start (no user cold start)
 – Build a model for each item

 \[y_{ij} \sim \sum_k u_{ik} \beta_{jk} = u_i \beta_j \]

 \begin{align*}
 y_{ij} & \quad \text{(Rating that user } i \text{ gives item } j) \\
 \sum_k u_{ik} \beta_{jk} & \quad \text{(Regression weight (factor) of item } j \text{ on the } k\text{th user factor)}
 \end{align*}

 – Once new ratings on item \(j \) are received, we update \(\beta_j \)
 – \(u_i \) can be user feature vector (if desired)
 • \(u_i \) is NOT learned online (e.g., updated daily)
 • \(\beta_j \) is learned online (e.g., updated every minute)
 – It is promising, but
 • What should be the initial point for \(\beta_j \)
 • Convergence may be slow when \(\beta_j \) is high dimensional
Our Solution

Standard online model

\[y_{ij} \sim u_i' \beta_j, \quad \beta_j \sim N(\mu_j, \Sigma) \]

- Feature-based model initialization

\[\beta_j \sim N(Ax_j, \Sigma) \quad \Leftrightarrow \quad y_{ij} \sim u_i' Ax_j + u_i' v_j \]

\(\Rightarrow \) predicted by features

\[v_j \sim N(0, \Sigma) \]

- Dimensionality reduce for fast model convergence

\[v_j = B \theta_j \]

\(B \) is a \(n \times k \) linear projection matrix \((k << n)\)

project: high dim\((v_j)\) \(\rightarrow\) low dim\((\theta_j)\)

\[\theta_j \sim N(0, \sigma_\theta^2 I) \]

low-rank approx of \(\text{Var}[\beta_j] \):

\[\beta_j \sim N(Ax_j, \sigma_\theta^2 BB') \]

- Fast, parallel online regression

\[y_{ij} \sim u_i' Ax_j + (u_i' B) \theta_j, \quad \text{where } \theta_j \text{ is updated in an online manner} \]

\(\Rightarrow \) offset new feature vector (low dimensional)

- Online selection of dimensionality \((k = \text{dim}(\theta_j))\)

 - Maintain an ensemble of models, one for each candidate dimensionality

Subscript:
- user \(i \)
- item \(j \)

Data:
- \(y_{ij} = \text{rating that user } i \text{ gives item } j \)
- \(u_i = \text{offline factor vector of user } i \)
- \(x_j = \text{feature vector of item } j \)
FOBFM: Fast Online Bilinear Factor Model

Observation model
\[y_{ij} \sim N(\mu_{ij}, \sigma^2) \] for numeric data
\[y_{ij} \sim Bernoulli\left(\frac{1}{1+\exp\{-\mu_{ij}\}}\right) \] for binary data
\[y_{ij} \sim Poisson(n_{ij} \cdot \exp\{\mu_{ij}\}) \] for count data

Offline model
\[\mu_{ij} = u'_i A x_j + u'_i v_j \]
\[u_i \sim N(Gx_i, \sigma^2_u I) \]
\[v_j = B \theta_j \]
\[\theta_j \sim N(0, \sigma^2_\theta I) \]

Periodically rebuild the model using historical data on old items (e.g., once a day)

Update \(\theta_j \) in an online manner (e.g., every minute)
Build one model per item independently

Online model
\[y_{ij} \sim u'_i A x_j + (u'_i B) \theta_j \]
output:
\[A, B, G, \sigma_u, \sigma_\theta, u_i, \text{ for all } i \]

Update \(\theta_j \) in an online manner (e.g., every minute)
Build one model per item independently

Subscript:
- \(i \) user
- \(j \) item

Data:
- \(y_{ij} \) = rating that user \(i \) gives item \(j \)
- \(x_i \) = feature vector of user \(i \)
- \(x_j \) = feature vector of item \(j \)
Experimental Results

• **My Yahoo! Dataset**
 – ~12M “ratings” from ~3M users to ~13K articles
 - click = positive; view without click = negative
 - Our supervised dimensionality reduction (reduced rank regression) outperforms unsupervised methods
 – Online selection of dimensionality is useful

• **MovieLens Dataset**
 – Benchmark movie recommendation dataset (~1M ratings)
 – Our fast learning method outperforms online versions of other collaborative filtering methods

• **Yahoo! Front Page Dataset**
 – ~2M “ratings” from ~30K frequent users to ~4K articles
 - click = positive; view without click = negative
 – Our fast learning method outperforms others
My Yahoo! Dataset (1)

Methods:

- **No-init**: Standard online regression with ~1000 parameters for each item
- **Offline**: Feature-based model without online update
- **PCR, PCR+**: Two principal component methods to estimate B
- **FOBFM**: Our fast online method

- Item-based data split: Every item is new in the test data
 - First 8K articles are in the training data (offline training)
 - Remaining articles are in the test data (online prediction & learning)

- Our supervised dimensionality reduction (reduced rank regression) significantly outperforms other methods
My Yahoo! Dataset (2)

• Small number of factors (low dimensionality) is better when the amount of data for online leaning is small
• Large number of factors is better when the data for learning becomes large
• The online selection method usually selects the best dimensionality

factors = Number of parameters per item updated online
MovieLens Dataset (1)

- **Training-test data split**
 - **Time-split**: First 75% ratings in training; rest in test
 - **Movie-split**: 75% randomly selected movies in training; rest in test

<table>
<thead>
<tr>
<th>Model</th>
<th>RMSE Time-split</th>
<th>RMSE Movie-split</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOBFM</td>
<td>0.8429</td>
<td>0.8549</td>
</tr>
<tr>
<td>RLFM</td>
<td>0.9363</td>
<td>1.0858</td>
</tr>
<tr>
<td>Online-UU</td>
<td>1.0806</td>
<td>0.9453</td>
</tr>
<tr>
<td>Constant</td>
<td>1.1190</td>
<td>1.1162</td>
</tr>
</tbody>
</table>

FOBFM: Our fast online method
RLFM: [Agarwal 2009]
Online-UU: Online version of user-user collaborative filtering
Online-PLSI: [Das 2007]
MovieLens Dataset (2)

- On MovieLens, dimensionality reduction is not effective
 - Let FOBFM $n \times k$ be the model that projects from a n-dimensional latent factor space to a k-dimensional space
 - Accuracy: (for $k < 40$)

$$\text{FOBFM } 40 \times 40 > \text{FOBFM } 40 \times k > \text{FOBFM } k \times k, \text{ for}$$

<table>
<thead>
<tr>
<th>k</th>
<th>Time-split RMSE $40 \times k$</th>
<th>Item-split RMSE $40 \times k$</th>
<th>Time-split RMSE $k \times k$</th>
<th>Item-split RMSE $k \times k$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.8680</td>
<td>0.8936</td>
<td>0.8793</td>
<td>0.8949</td>
</tr>
<tr>
<td>3</td>
<td>0.8570</td>
<td>0.8789</td>
<td>0.8650</td>
<td>0.8811</td>
</tr>
<tr>
<td>5</td>
<td>0.8518</td>
<td>0.8712</td>
<td>0.8567</td>
<td>0.8754</td>
</tr>
<tr>
<td>7</td>
<td>0.8514</td>
<td>0.8675</td>
<td>0.8526</td>
<td>0.8727</td>
</tr>
<tr>
<td>40</td>
<td>0.8429</td>
<td></td>
<td>0.8549</td>
<td></td>
</tr>
</tbody>
</table>
Yahoo! Front Page Dataset

- Training-test data split
 - Time-split: First 75% ratings in training; rest in test
Conclusion

• Recommending time-sensitive items is challenging
 – Most collaborative filtering methods do not work well in cold start
 – Rebuilding models can incur too much latency when the numbers of items and users are large

• Our approach:
 – Periodically rebuild the offline model that
 • uses feature-based regression to predict the initial point for online learning, and
 • reduces the dimensionality of online learning
 – Rapidly update online models once new data is received
 • Fast learning: Low dimensional and easily parallelizable
 • Online selection for the best dimensionality

• How to effectively use historical data to improve online learning is a promising research direction

Appendix
Offline Model Fitting

- **Given historical data**
 - Features: \{x_i, x_j\}
 - Observed ratings: \(\mathbf{y} = \{y_{ij}\}\)

- **Estimate**
 - Prior parameters \(\eta = (A, B, G, \sigma_\theta, \sigma_u)\)
 - Regression weights: \(A, B, G\)
 - Prior variances: \(\sigma_\theta, \sigma_u\)
 - Latent factors \(\Theta = \{u_i, \theta_j\}\)

- **Maximum likelihood estimate (MLE) of \(\eta\)**
 \[
 \hat{\eta}_{\text{MLE}} = \arg\max_{\eta} p(\mathbf{y} | \eta) = \arg\max_{\eta} \int p(\mathbf{y}, \Theta | \eta) \, d\Theta
 \]
 - Also, \(E[u_i | \mathbf{y}, \eta_{\text{MLE}}]\)

Offline model

\[
\mu_{ij} = u_i' A x_j + u_i' \nu_j
\]
\[
u_i \sim N(G x_i, \sigma_u^2 I)
\]
\[
\nu_j = B \theta_j
\]
\[
\theta_j \sim N(0, \sigma_\theta^2 I)
\]
Offline Model Fitting: EM Algorithm

- Iterate between E step and M step until convergence
 - Let \(\hat{\eta}^{(n)} \) be the current estimate
 - E-step: Compute
 \[
 f(\eta) = E_{(\Theta | y, \hat{\eta}^{(n)})} [\log p(y, \Theta | \eta)]
 \]
 - The expectation is not in closed form
 - We draw Gibbs samples and compute the Monte Carlo mean
 - M-step: Find
 \[
 \hat{\eta}^{(n+1)} = \arg \max_{\eta} f(\eta)
 \]
 - It consists of solving a number of regression and optimization problems
Online Procedure

• Estimate θ_j
 – A, B, u_i are given
 – Data:
 • Label: y_{ij}
 • Constant offset: $u_i^tAx_j$
 • Feature vector: u_i^tB
 – Small dimensional regression
 – Separate regression for each item

• Determine the number k of factors per item
 – $B_{n \times k}$ projects from n-dim space to k-dim
 – Offline training: Build m models; each with $B_{n \times k}$ for a different k
 – Online: Simultaneously maintain m online models for each item j
 • k-dim model: $y_{ij} \sim u_i^tAx_j + (u_i^tB_{n \times k})\theta_j^{(k)}$
 • Use the model that has the best accuracy in the most recent time window to make prediction

Online model

\[y_{ij} \sim u_i^tAx_j + (u_i^tB)\theta_j \]