Mining Advisor-advisee Relationship from Research Publication Network

Chi Wang¹, Jiawei Han¹, Yuntao Jia¹, Jie Tang², Duo Zhang¹, Yintao Yu¹, Jingyi Guo²

¹ University of Illinois at Urbana-Champaign
{chiwang1, hanj, yjia3, dzhang22, yintao}@illinois.edu
² Tsinghua University {jietang, guojy07@mails}.tsinghua.edu.cn
Role Discovery

Information network without role/relationship info, e.g. a company’s email network

Latent relationship graph

How to infer

CEO
Manager
Employee
This Work: Advisor-advisee

- **Input:** research publication network.
- **Output:** potential advising relationship and their ranking – \((r, [st, ed])\)

![Diagram showing the input temporal collaboration network and the output relationship analysis with visualized chronological hierarchies.](image-url)
Objective: predict relationship type from plain links

Challenge?
- Time-dependent
- Interdependency on network
- Scalability

Opportunity?
- Rules, though soft
- Crosscheck using network
- Sparsity

Methodology: propagate simple intuitive rules and constraints over the whole network
Overall Framework

- **ai**: author i
- **pj**: paper j
- **py**: paper year
- **pn**: paper#
- **lj**: local feature
- **st_{i,yi}**: start time
- **ed_{i,yi}**: end time
- **ri,yi**: ranking score
Local Features - Preprocess

- For every pair of coauthors a_i and a_j
 - Create a potential link from a_i to a_j if a_j has a longer publication history than a_i
 - Compute Kulczynski and Imbalance Ratio measure for the coauthored publications at different time t
 - Estimate the advising time
 - $S_{ij} =$ the start time of coauthorship
 - $E_{ij} =$ the time point when correlation drops
 - YEAR1: $K_{ij}^t > K_{ij}^{t+1}$
 - YEAR2: $\max(K_{ij}^t - K_{ij}^{t+1})$
 - Remove the link if certain rules apply, o.w. sum average Kul and IR as a rough likelihood
Why is network structure helpful?

- More than pairwise features: interdependence

One's advisor could be inferred depending on others' advisor!
Basic Constraints

- If a_y advises a_x since the year st_x
 - a_y can only advise a_x after it graduated
 - $ed_y < st_x < ed_x$
 - a_y must have a longer history of publication than a_x before st_x.

 - The candidate graph H' is a DAG.

The model can incorporate other intuitions as factor functions.
Time-constrained Probabilistic Factor Graph (TPFG)

- Hidden variable y_x - a_x's advisor
- $st_{x,yx}$ - start time
- $ed_{x,yx}$ - end time
- $g(y_x, st_x, ed_x)$ - pairwise local feature $l_{x,yx}$
- $f_x(y_x, Z_x) = g(y_x, st_x, ed_x)$ if time constraint is s.f., 0 otherwise
- Objective function $P(\{y_x\}) = \prod_x f_x (y_x, Z_x)$
- Z_x - set of potential advisees of a_x
Inference Algorithm of TPFG

\[r_{ij} = \max P(y_1, \ldots, y_{na} | y_i = j) = \exp (sent_{ij} + recv_{ij}) \]
A Running Example

The diagram illustrates a network with nodes labeled a_0, a_1, a_2, a_3, a_4, and a_5. The edges between the nodes are labeled with numerical values, indicating connections and weights in the network.
A Running Example (cont’d)

\[\log r = \text{sent} + \text{recv} \]

- \[\log r_{10} = -3.4 + 3.4 = 0 \]
- \[\log r_{20} = -8.5 + 1.8 = -6.7 \]
- \[\log r_{21} = -1.8 + 1.8 = 0 \]
- \[\log r_{30} = -3.8 + 1.6 = -2.2 \]
- \[\log r_{31} = -1.6 + 1.6 = 0 \]
- \[\log r_{32} = -3.6 - 0.65 = -4.25 \]
- \[\log r_{40} = -1.5 + 0.94 = -0.6 \]
- \[\log r_{43} = -0.94 - 0.16 = -1.1 \]
- \[\log r_{50} = -4.8 + 0.25 = -4.6 \]
- \[\log r_{53} = -0.25 + 0.25 = 0 \]

Gather answers:

- \[y_1 = 0 \]
- \[y_2 = 1, \text{st}_2 = 1999, \text{ed}_2 = 2000 \]
- \[y_3 = 1, \text{st}_3 = 2000, \text{ed}_3 = 2001 \]
- \[y_4 = 3, \text{st}_4 = 2001, \text{ed}_4 = 2003 \]
- \[y_5 = 3, \text{st}_5 = 2002, \text{ed}_5 = 2004 \]
Experiment Results

- DBLP data: 654,628 authors, 1076,946 publications, publishing time provided.
- Labeled data: MathGenealogy Project; AI Gealogy Project; Faculty Homepage

<table>
<thead>
<tr>
<th>Datasets</th>
<th>RULE</th>
<th>SVM</th>
<th>TPFG</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEST1</td>
<td>69.9%</td>
<td>73.4%</td>
<td>80.2%</td>
</tr>
<tr>
<td>TEST2</td>
<td>69.8%</td>
<td>74.6%</td>
<td>81.5%</td>
</tr>
<tr>
<td>TEST3</td>
<td>80.6%</td>
<td>86.7%</td>
<td>88.8%</td>
</tr>
</tbody>
</table>

Heuristics | Supervised learning | Empirical parameter | Optimized parameter
Case Study & Scalability

<table>
<thead>
<tr>
<th>Advisee</th>
<th>Top Ranked Advisor</th>
<th>Time</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>David M. Blei</td>
<td>1. Michael I. Jordan</td>
<td>01-03</td>
<td>PhD advisor, 2004 grad</td>
</tr>
<tr>
<td></td>
<td>2. John D. Lafferty</td>
<td>05-06</td>
<td>Postdoc, 2006</td>
</tr>
<tr>
<td>Hong Cheng</td>
<td>1. Qiang Yang</td>
<td>02-03</td>
<td>MS advisor, 2003</td>
</tr>
<tr>
<td></td>
<td>2. Jiawei Han</td>
<td>04-08</td>
<td>PhD advisor, 2008</td>
</tr>
<tr>
<td>Sergey Brin</td>
<td>1. Rajeev Motawani</td>
<td>97-98</td>
<td>“Unofficial advisor”</td>
</tr>
</tbody>
</table>

![Graphs](image-url)
Exact VS Approximate Inference

- Exact inference of TPFG
 - JuncT: Junction Tree + Sum-Product

- Approximate inference
 - LBP: Loopy Belief Propagation
 - TPFG: the proposed message passing algorithm
 - IndMax: local features only
Filtering rules in TPFG

\(R1: IR_{ij}^t < 0 \) in the sequence \(\{IR_{ij}^t\}_t \) during the collaboration period of \(a_i \) and \(a_j \),

\(R2: \) there is no increase in the sequence \(\{kulc_{ij}^t\}_t \) during the collaboration period,

\(R3: \) the collaboration period of \(a_i \) and \(a_j \) lasts only for one year,

\(R4: py_{ij}^1 + 2 > py_{ij}^1 \),

Local feature measure:
KULC and IR
Effect of Network Depth

- Different closures of given set of nodes
 - DFS with bounded maximal depth d: d-closure
Application: Visualization

RULE

TPFG

18
Application: Expert Finding

An example on a real system: Arnetminer

Performance improvement
Related work

- **“Relation Mining”** [Kadri 03, Rinaldi 06, Coppola 08]
 - Mainly text mining and language processing on text data and structured data.

- **“Relational Learning”** [Getoor 07, Tang 09]
 - The classification when objects and entities are presented in multiple relations

- **Relationship with semantic meaning**
 - [Diehl 07]: a supervised approach
 - Our approach: for network with neither text nor labeled data
Thank you