Nonparametric Variational Inference

Sam Gershman, Matt Hoffman, David Blei
Princeton University, Adobe Creative Technologies Lab
Approximate inference

- We want to approximate a distribution $p(\theta)$, but we can only compute it up to a constant.
- E.g., we’re interested in $p(\theta | y)$, but can only compute $p(y, \theta)$.
Variational inference

- Variational inference approximates $p(\theta \mid y)$ with some tractable distribution $q(\theta)$ by solving an optimization problem.
Variational inference: the agony and the ecstasy

- Variational methods often converge much faster than Markov chain Monte Carlo (MCMC) methods. But they suffer from two major drawbacks:

1. **Model expressivity**: updates and objective functions are usually restricted to conditionally conjugate models paired with simple approximating distributions.

2. **User-friendliness**: deriving variational updates involves a fair amount of tedious math.
Nonparametric variational inference

- We derive a variational inference algorithm that
 1. is applicable to models without conditional conjugacy and
 2. only requires the ability to evaluate the log-posterior (up to a constant), its gradient, and optionally the diagonal of its Hessian.
Our approach

- We restrict q to be a mixture of Gaussians (cf. the mixture mean-field approach of Lawrence, Jaakola, et al.):

$$q(\theta) = \frac{1}{N} \sum_n N(\theta; \mu_n, \sigma_n^2)$$

- Can be interpreted as kernel density estimation of the posterior $p(\theta | y)$.
Our approach

• The standard variational objective ("evidence lower bound", or ELBO) is

\[F(q) = E_q[\log p(y, \theta)] - E_q[\log q(\theta)] \]

where \(y \) is a set of observed variables, \(\theta \) is a set of latent variables, and \(q \) is the approximating distribution.

• We derive an approximate ELBO that can be easily optimized using gradient methods (e.g. LBFGS).
The basic idea

\[F(q) = E_q[\log p(y, \theta)] - E_q[\log q(\theta)] \]

Approximate using Taylor series expansion around the mean of each Gaussian component

Lower-bound entropy using Jensen’s inequality and by exploiting properties of Gaussian mixtures
Entropy bound

\[H(q) = - \int_\theta q(\theta) \log q(\theta) \, d\theta \]

\[= - \int_\theta q(\theta) \log \left(\frac{1}{N} \sum N(\theta; \mu_n, \sigma_n^2)\right) \, d\theta \]

\[\geq - \frac{1}{N} \sum \log \int_\theta q(\theta) N(\theta; \mu_n, \sigma_n^2) \, d\theta \]

\[\geq - \frac{1}{N} \sum \log \sum N(\mu_n; \mu_j, \sigma_n^2 + \sigma_j^2) \]
Log-joint bound

2nd-order Taylor expansion (multivariate delta method for moments) yields

\[E_q[\log p(y, \theta)] \approx \left(\frac{1}{N} \right) \Sigma_n \log p(y, \mu_n) + \left(\frac{\sigma_n^2}{2} \right) \text{Tr}(H_n) \]

Only requires diagonal of Hessian \(H_n \) evaluated at \(\mu_n \).
Approximate ELBO

Encourages each μ_n to be in a high-density region

$$\frac{1}{N} \sum_n \log p(y, \mu_n) + \frac{\sigma_n^2}{2} \text{Tr}(H_n)$$

$$- \log \sum_j \mathcal{N}(\mu_n; \mu_j, \sigma_n^2 + \sigma_j^2)$$

Discourages overly broad Gaussians

Encourages means to spread out

Encourages Gaussians to be broader
Optimizing the approximate ELBO

\[(1/N) \sum \log p(y, \mu_n) + (\sigma_n^2/2) \text{Tr}(H_n) - \log \sum_j N(\mu_n; \mu_j, \sigma_n^2 + \sigma_j^2)\]

1. Optimize each \(\mu_n\) holding others fixed, ignoring Hessian trace term.
 - Avoids computing \(N^2\) third derivatives.
 - Avoids possible degeneracies with non-log-concave posteriors.

2. Optimize \(\sigma\) vector holding \(\mu\) fixed.
Relationships to other algorithms

- $N = 1, \sigma \to 0$: maximum a posteriori (MAP).
- $N = 1, \sigma$ variable: diagonalized Laplace approximation.
- $N > 1, \sigma \to 0$: quasi-Monte Carlo.
- $N > 1, \sigma$ variable: a form of mixture mean-field (Jaakkola & Jordan, 1998; Lawrence, 2000).
- Analogous to KDE.
Synthetic example
Topographic latent source analysis: NPV vs. MAP and MCMC
Summary

- Nonparametric variational inference
 1. circumvents conjugacy restrictions and
 2. allows for more expressive variational distributions than mean-field.
- Can be used for arbitrary graphical models.
Future work

- Consider more flexible classes of approximating distributions
 - Non-isotropic Gaussians
 - Nonuniform mixture weights
- Extend to models with discrete random variables
 - Continuous relaxations?
- Implement in Stan (mc-stan.org)