On Community Outliers and their Efficient Detection in Information Networks

Jing Gao¹, Feng Liang¹, Wei Fan², Chi Wang¹, Yizhou Sun¹, Jiawei Han¹

¹ University of Illinois
² IBM TJ Watson
Information Networks

- **Node** represents an entity
 - Each node has feature values
 - e.g., users in social networks, webpages on internet
- **Link** represents relationship between entities
 - e.g., two users are linked if they are friends; two webpages are linked through hyper-links
- **Information networks** are ubiquitous
Outlier (Anomaly, Novelty) Detection

• Goal
 – Identify points that deviate significantly from the majority of the data

from A. Banerjee, V.Chandola, V. Kumar, J.Srivastava. Anomaly Detection: A Tutorial. SDM'08
Community Outliers

• Definition
 – Two information sources: links, node features
 – There exist communities based on links and node features
 – Objects that have feature values deviating from those of other members in the same community are defined as community outliers
Contextual (Conditional) Outliers

• Global vs. Contextual
 – Global: identify outliers among all the data
 – Contextual: identify outliers within a subset of data defined by contextual features
Examples

• Contexts

– a subset of features, temporal, spatial, or communities in networks (in this paper)
Outliers in Information Networks

1) Global outlier:
 - only consider node features

2) Structural outlier:
 - only consider links

3) Local outlier:
 - only consider the feature values of direct neighbors
Unified Model is Needed

- Links and node features
 - More meaningful to identify communities based on links and node features together
- Community discovery and outlier detection
 - Outliers affect the discovery of communities

Diagram showing relationships between nodes (V1 to V10) with different link weights.
A Unified Probabilistic Model (1)

\[\Theta = (\theta_1, \ldots, \theta_K) \]

- **K**: number of communities
- **high-income**: mean: 116k, std: 35k
- **low-income**: mean: 20k, std: 12k
A Unified Probabilistic Model (2)

• **Probability**
 – Maximize $P(X) \propto P(X|Z)P(Z)$
 – $P(X|Z)$ depends on the community label and model parameters
 • eg., salaries in the high or low-income communities follow Gaussian distributions defined by mean and std
 – $P(Z)$ is higher if neighboring nodes from normal communities share the same community label
 • eg., two linked persons are more likely to be in the same community
 • outliers are isolated—does not depend on the labels of neighbors
Modeling Continuous or Text Data

• **Continuous**
 – Gaussian distribution
 – Model parameters: mean, standard deviation

• **Text**
 – Multinomial distribution
 – Model parameters: probability of a word appearing in a community
Community Outlier Detection Algorithm

- Initialize Z
- Fix Z, find Θ that maximizes $P(X|Z)$
- Fix Θ, find Z that maximizes $P(Z|X)$

Θ: model parameters

Z: community labels

Parameter estimation

Inference
Inference (1)

- Calculate Z
 - Model parameters are known
 - Iteratively update the community labels of nodes
 - Select the label that maximizes $P(Z|X,Z_N)$

low-income

high-income

100k

mean:

high-income: 110k
low-income: 30k

high-income?
80% ✔

low-income?
10%

outlier? 10%
Inference (2)

- Calculate $P(Z|X,Z_N)$
 - Consider both the node features and community labels of neighbors if Z indicates a normal community
 - If the probability of a node belonging to any community is low enough, label it as an outlier

\[
\begin{align*}
P(salary=100k|\text{high-income}) & \\
P(salary=100k|\text{low-income}) & \\
P(\text{high-income}|\text{neighbors}) & \\
P(\text{low-income}|\text{neighbors}) & \\
\text{mean:} & \\
\text{high-income: 100k} & \\
\text{low-income: 30k} & \\
\end{align*}
\]
Parameter Estimation

• Calculate model parameters
 – maximum likelihood estimation

• Continuous
 – mean: sample mean of the community
 – standard deviation: square root of the sample variance of the community

• Text
 – probability of a word appearing in the community: empirical probability
Simulated Experiments

• **Data**
 – Generate continuous data based on Gaussian distributions and generate labels according to the model
 – \(r \): percentage of outliers, \(K \): number of communities

• **Baseline models**
 – GLODA: global outlier detection (based on node features only)
 – DNODA: local outlier detection (check the feature values of direct neighbors)
 – CNA: partition data into communities based on links and then conduct outlier detection in each community
Precision

![Precision Chart]

- GLODA
- DNODA
- CNA
- CODA

The chart shows the precision values for different settings of r and K.
Experiments on DBLP

• Data
 – DBLP: computer science bibliography
 – Areas: data mining, artificial intelligence, database, information analysis

• Case studies
 – Conferences:
 • Links: percentage of common authors among two conferences
 • Node features: publication titles in the conference
 – Authors:
 • Links: co-authorship relationship
 • Node features: titles of publications by an author
Case Studies on Conferences

<table>
<thead>
<tr>
<th>Communities</th>
<th>Keywords</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Mining</td>
<td>frequent dimensional spatial association similarity pattern fast sets approximate series</td>
</tr>
<tr>
<td>Database</td>
<td>oriented views applications querying design access schema control integration sql</td>
</tr>
<tr>
<td>Artificial Intelligence</td>
<td>reasoning planning logic representation recognition solving problem reinforcement programming theory</td>
</tr>
<tr>
<td>Information Analysis</td>
<td>relevance feature ranking automatic documents probabilistic extraction user study classifiers</td>
</tr>
</tbody>
</table>

- **Database:** ICDE, VLDB, SIGMOD, PODS, EDBT
- **Artificial Intelligence:** IJCAI, AAAI, ICML, ECML
- **Data Mining:** KDD, PAKDD, ICDM, PKDD, SDM
- **Information Analysis:** SIGIR, WWW, ECIR, WSDM

Community outliers: CVPR CIKM
Conclusions

• Community Outliers
 – Nodes that have different behaviors compared with the others in the community

• Community Outlier Detection
 – A unified probabilistic model
 – Conduct community discovery and outlier detection simultaneously
 – Consider both links and node features
Thanks!

• Any questions?