Semi-Supervised Feature Selection for Graph Classification

Xiangnan Kong, Philip S. Yu

Department of Computer Science
University of Illinois at Chicago

KDD 2010
Graph Classification
- why should we care?

- Conventional data mining and machine learning approaches assume data are represented as feature vectors. E.g. \((x_1, x_2, \ldots, x_d) - y\)

- In real apps, data are not directly represented as feature vectors, but **graphs** with complex structures. E.g. \(G(V, E, l) - y\)

Chemical Compounds Program Flows XML Docs
Drug activity prediction problem

Given a set of chemical compounds labeled with activities

Predict the activities of testing molecules
Subgraph-based Graph Classification

How to mine a set of **subgraph** patterns in order to **effectively** perform graph classification?
Two Components:

1. **Evaluation** *(effective)*
 whether a subgraph feature is relevant to graph classification?

2. **Search space pruning** *(efficient)*
 how to avoid enumerating all subgraph features?
One Problem

- Supervised Settings
 - Require a large set of labeled training graphs

- However...

 Labeling a graph is hard!
Lack of labels -> problems

Supervised Methods:

1. Evaluation effective?
 require large amount of label information

2. Search space pruning efficient?
 pruning performances rely on large amount of label information
Mine useful subgraph patterns using *labeled* and *unlabeled* graphs
Two Key Questions to Address

- **Evaluation**: How to evaluate a set of subgraph features with both labeled and unlabeled graphs? (effective)

- **Search Space Pruning**: How to prune the subgraph search space using both labeled and unlabeled graphs? (efficient)
What is a good feature?

- **Cannot-Link**
 - Graphs in different classes should be far away

- **Must-Link**
 - Graphs in the same class should be close

- **Separability**
 - Unlabeled graphs are able to be separated from each other
- **Cannot-Link**
 Graphs in different classes should be far away

- **Must-Link**
 Graphs in the same class should be close

- **Separability**
 Unlabeled graphs are able to be separated from each other

Evaluation Function:

\[\mathcal{T}^* = \arg\max_{\mathcal{T} \subseteq S} J(\mathcal{T}) \quad \text{s.t.} \quad |\mathcal{T}| \leq t \]

\[
\frac{\alpha}{2|C|} \sum_{y_i y_j = -1} (D_T x_i - D_T x_j)^2 + \frac{\beta}{2|M|} \sum_{y_i y_j = 1} (D_T x_i - D_T x_j)^2 + \frac{1}{2|D_u|^2} \sum_{G_i, G_j \in D_u} (D_T x_i - D_T x_j)^2
\]
In matrix form:

\[
J(T) = \frac{1}{2} \sum_{i,j} (D_T x_i - D_T x_j)^2 W_{ij}
\]

\[
= \text{tr}(D_T^\top X (D - W) X^\top D_T)
\]

\[
= \text{tr}(D_T^\top X L X^\top D_T)
\]

\[
= \sum_{g_k \in T} (f_k^\top L f_k) \quad \text{(the sum over all selected features)}
\]

- **gSemi Score:**

\[
h(g_k, L) = f_k^\top L f_k
\]

\[
f_k \in \{0, 1\}^n \quad \text{represents the k-th subgraph feature}
\]
Experiment Results

- #labeled Graphs = 30
 - a) MCF-3
 - b) NCI-H23
 - c) OVCAR-8
 - d) PTC-MM
 - e) PTC-FM

- #labeled Graphs = 50
 - a) MCF-3
 - b) NCI-H23
 - c) OVCAR-8
 - d) PTC-MM
 - e) PTC-FM

- #labeled Graphs = 70
 - a) MCF-3
 - b) NCI-H23
 - c) OVCAR-8
 - d) PTC-MM
 - e) PTC-FM

Datasets:
- MCF-3 dataset
- NCI-H23 dataset
- OVCAR-8 dataset
- PTC-MM dataset
- PTC-FM dataset
Our approach performed best at NCI and PTC datasets.
Two Key Questions to Address

- How to evaluate a set of subgraph features with both labeled and unlabeled graphs? (effective)

- How to prune the subgraph search space using both labeled and unlabeled graphs? (efficient)
Finding a Needle in a Haystack

gSpan [Yan et. al ICDM’02]
An efficient algorithm to enumerate all frequent subgraph patterns
(frequency ≥ min_support)

- Too many frequent subgraph patterns
- Find the most useful

How to find the Best node(s) in this tree without searching all the nodes?
(Branch and Bound to prune the search space)
Pruning Principle

Best subgraph so far

If

\[\text{best score} \geq \text{upper bound} \]

We can prune the entire sub-tree
Pruning Results

Without gSemi pruning

Subgraphs explored
(lower is better)

Graph:
- Y-axis: # of Subgraphs explored (lower is better)
- X-axis: min_sup (%)
- Red line: Without gSemi pruning
- Blue line: gSemi pruning

(MCF-3 dataset)
Conclusions

- **Semi-Supervised** Feature Selection for Graph Classification
 - Evaluating subgraph features using both labeled and unlabeled graphs (effective)
 - Branch&bound pruning the search space using labeled and unlabeled graphs (efficient)

Thank you!