Unsupervised Feature Selection for Multi-Cluster Data

Deng Cai, Chiyuan Zhang, Xiaofei He
Zhejiang University
Problem: High-dimension Data

- Text document
- Image
- Video
- Gene Expression
- Financial
- Sensor
- …
Problem: High-dimension Data

- Text document
- Image
- Video
- Gene Expression
- Financial
- Sensor
- …
Solution: Feature Selection

Reduce the dimensionality by finding a relevant feature subset
Feature Selection Techniques

- Supervised
 - Fisher score
 - Information gain

- Unsupervised (discussed here)
 - Max variance
 - Laplacian Score, NIPS 2005
 - Q-alpha, JMLR 2005
 - MCFS, KDD 2010 (Our Algorithm)
 - ...
Outline

- Problem setting
- *Multi-Cluster Feature Selection* (MCFS) Algorithm
- Experimental Validation
- Conclusion
Problem setting

- Unsupervised Multi clusters/classes Feature Selection

- How traditional score-ranking methods fail:

(a) plane $a \otimes b$

(b) plane $a \otimes c$

(c) plane $b \otimes c$
Multi-Cluster Feature Selection (MCFS) Algorithm

- **Objective**
 - Select those features such that the multi-cluster structure of the data can be well preserved

- **Implementation**
 - Spectral analysis to explore the intrinsic structure
 - L1-regularized least-square to select best features
Spectral Embedding for Cluster Analysis

- **Laplacian Eigenmaps**
 1. Weight matrix W
 - 0-1 weighting
 - Heat kernel weighting
 - Cosine weighting
 2. Graph Laplacian
 - $L = D - W$ where $D_{ii} = \sum_j W_{ij}$
 3. Generalized Eigen-problem
 - $Ly = \lambda Dy$
Spectral Embedding for Cluster Analysis

- Laplacian Eigenmaps
 - Can *unfold* the data manifold and provide the *flat* embedding for data points
 - Can reflect the data distribution on each of the data clusters
 - Thoroughly studied and well understood
Learning Sparse Coefficient Vectors

- **LASSO Regression**
 \[\min_{a_k} \| y_k - X^T a_k \|^2 + \beta |a_k| \]

- \(a_k \) contains the combination coefficients for different features in approximating \(y_k \)
- With L1-norm regularization, some coefficients will be shrunk to zero if \(\beta \) is large enough
- LARs can be used to solve the problem efficiently
 - and conveniently (explicitly control the sparsity)

- Solved the problem of feature correlation & combination
Feature Selection on Sparse Coefficient Vectors

- Select d features from M feature candidates
- Obtain K sparse coefficient vector $\{a_k\}_{k=1}^K$, each of cardinality d
- Assign a MCFS score for each feature as
 - $MCFS(j) = \max_k |a_{k,j}|$
- Select the d features with top MCFS scores
Algorithm Summary

1. Construct p-nearest neighbor graph W
2. Solve generalized eigen-problem to get K eigenvectors corresponding to the smallest eigenvalues
3. Solve K L1-regularized regression to get K sparse coefficient vectors
4. Compute the MCFS score for each feature
5. Select d features according to MCFS score
Complexity Analysis

1. Graph construction
 - $O(N^2 M)$ to compute pairwise distance
 - $O(N^2 p)$ to find p neighbors for each data point
2. Lanczos algorithm for eigen-problem
 - $O(KNp)$
3. LARs for LASSO solving
 - $O(Kd^3 + NKd^2)$
4. MCFS score computation
 - $O(KM)$
5. Feature selection
 - $O(M \log M)$
Experiments

- Unsupervised feature selection for
 - Clustering
 - Nearest neighbor classification

- Compared algorithms
 - MCFS
 - Q-alpha
 - Laplacian score
 - Maximum variance
Experiments (USPS Clustering)

- USPS Hand Written Digits
 - 9298 samples, 10 classes, 16x16 gray-scale image each
Experiments (COIL20 Clustering)

- COIL20 image dataset
 - 1440 samples, 20 classes, 32x32 gray-scale image each
Experiments (ORL Clustering)

- ORL face dataset
 - 400 images of 40 subjects
 - 32x32 gray-scale images

10 Classes
20 Classes
30 Classes
40 Classes
Experiments (Isolet Clustering)

- Isolet spoken letter recognition data
 - 1560 samples, 26 classes
 - 617 features each sample
Experiments (Nearest Neighbor Classification)

- Leave-one-out cross validation
- Measured by error rate
 \[ER = 1 - \frac{1}{N} \sum_{i=1}^{N} \delta(c(x_i), c(x'_i)) \]
Experiments (Parameter Selection)

- Number of nearest neighbors p: stable

- Number of eigenvectors: best equal to number of classes
Conclusion

- **MCFS**
 - Well handle multi-class data
 - Outperform state-of-art algorithms
 - Performs especially well when number of selected features is small (< 50)
Questions