Inexact Search Directions in Interior Point Methods for Large Scale Optimization

Jacek Gondzio
Email: J.Gondzio@ed.ac.uk
URL: http://www.maths.ed.ac.uk/~gondzio/

Lake Tahoe, December 8, 2012
Outline

- 1st- and 2nd-order methods for optimization
- Interior Point Methods: Pros & Cons
- Accelerating IPMs
- *Exact* vs *Inexact* search directions and IPMs → worst-case complexity results
- Inexact Newton → Krylov subspace methods
- Preconditioner is a must
- Computational results
 - Compressed Sensing
 - Google Problem
- Conclusions
1st-order Methods for Optimization

The 1st-order methods are applied to unconstrained optimization

\[
\min f(x) + \Psi(x) \\
\text{s.t. } x \in X,
\]

where \(f\) and \(\Psi\) are convex functions (may be smooth, separable, strongly convex) and \(X\) is an easy set \((\mathbb{R}^n, \text{box}, \text{hyperplane}, \text{etc})\).

The 1st-order methods rely on gradients (or sub-gradients) of \(f\) and \(\Psi\).

Randomization often helps.
Interior Point Methods (IPMs)
IPMs are applied to **constrained** optimization

\[
\begin{align*}
\min & \quad f(x) \\
\text{s.t.} & \quad g(x) \leq 0, \\
& \quad h(x) = 0,
\end{align*}
\]

where \(f, g \) and \(h \) are convex functions.

IPMs easily deal with the **inequalities**:

- **LO/QO** \(x \geq 0, \ x \in \mathbb{R}^n \)
- **NLO** \(g(x) \leq 0, \ g : \mathbb{R}^n \mapsto \mathbb{R}^m \)
- **SOCO** \(x \in K = K^1 \times K^2 \times \cdots \times K^k \) (cones)
- **SDO** \(X \succeq 0, \ X \in \mathbb{S}\mathbb{R}^{n \times n} \)

IPMs rely on the 2nd-order information of \(f, g \) and \(h \).
Observation

- First-order methods
 - complexity $O(1/\varepsilon)$ or $O(1/\varepsilon^2)$
 - produce a rough approx. of solution quickly
 - but ... struggle to converge to high accuracy

- IPMs are second-order methods
 (they apply Newton method to barrier subprobs)
 - complexity $O(\log(1/\varepsilon))$
 - produce accurate solution in a few iterations
 - but ... one iteration may be expensive
Just think

For example, $\varepsilon = 10^{-3}$ gives
$1/\varepsilon = 10^{3}$ and $1/\varepsilon^2 = 10^{6}$, but $\log(1/\varepsilon) \approx 7$.

For example, $\varepsilon = 10^{-6}$ gives
$1/\varepsilon = 10^{6}$ and $1/\varepsilon^2 = 10^{12}$, but $\log(1/\varepsilon) \approx 14$.

But ML Community loves the 1st-order methods.

Stirring up a hornets nest:

Please give IPMs a serious consideration!

Lake Tahoe, December 8, 2012
Interior Point Methods
LO & QO Problems

\[
\begin{align*}
\min & \quad c^T x + \frac{1}{2} x^T Q x \\
\text{s.t.} & \quad Ax = b, \\
& \quad x \geq 0,
\end{align*}
\]

where \(A \in \mathbb{R}^{m \times n} \) has full row rank
and \(Q \in \mathbb{R}^{n \times n} \) is symmetric positive semidefinite.

\(m \) and \(n \) may be large.

Assumption: \(A \) and \(Q \) are “operators” \(A \cdot u, A^T \cdot v, Q \cdot u \)

Expectation: Low complexity of these operations
Interior-Point Framework

The **log barrier** $-\log x_j$ “replaces” the inequality $x_j \geq 0$.

We derive the **first order optimality conditions** for the primal barrier problem:

\[
Ax = b, \\
-Qx + A^Ty + s = c, \\
XS_e = \mu e,
\]

and apply **Newton method** to solve this system of (nonlinear) equations.

Lake Tahoe, December 8, 2012
The First Order Optimality Conditions

\[
Ax = b, \quad -Qx + A^T y + s = c, \quad XSe = \mu e, \quad (x, s) > 0.
\]

Assume primal-dual feasibility:

\[
Ax = b \quad \text{and} \quad -Qx + A^T y + s = c
\]

Apply Newton Method to the FOC

\[
\begin{bmatrix}
A & 0 & 0 \\
-Q & A^T & I \\
S & 0 & X
\end{bmatrix}
\begin{bmatrix}
\Delta x \\
\Delta y \\
\Delta s
\end{bmatrix}
= \begin{bmatrix}
b - Ax \\
c - A^T y - s + Qx \\
\sigma \mu e - XSe
\end{bmatrix}
= \begin{bmatrix} 0 \\
0 \\
\xi
\end{bmatrix}.
\]
Central Path:

A set of all solutions to the optimality conds for $\mu > 0$.

\[
Ax = b, \\
-Qx + A^T y + s = c, \\
XSe = \mu e.
\]
Path Following Method:

Stay in the **neighbourhood** (of the central path)

\[\mathcal{N}_2(\theta) := \{(x, y, s) \in \mathcal{F}^0 : \|XSe - \mu e\|_2 \leq \theta \mu\} \]

\[\mathcal{N}_S(\gamma) := \{(x, y, s) \in \mathcal{F}^0 : \gamma \mu \leq x_is_i \leq (1/\gamma) \mu\} \]

where

\[\mathcal{F}^0 := \{(x, y, s) : c - ATy - s + Qx = 0, Ax = b, x, s > 0\} \].
Standard complexity result

Theorem (Wright, Thm 5.12).

Let $\epsilon > 0$ be the required accuracy of the optimal solution. The (short-step, feasible) interior point method finds the ϵ-accurate solution such that

$$\mu^k \leq \epsilon$$

after at most

$$K = \mathcal{O}(\sqrt{n} \log(1/\epsilon))$$

iterations.
Standard IPMs for LO/QO

We know that IPMs converge in

- *theory*: $O(\sqrt{n} \log(1/\varepsilon))$ iterations
- *practice*: $O(\log n \log(1/\varepsilon))$ iterations

But the per-iteration cost may be high

- *practice*: between $O(n^2)$ and $O(n^3)$
Objective: Accelerate IPMs for LO/QO

- Find an ϵ-accurate solution in $\mathcal{O}(\log n \log(1/\epsilon))$ iterations (in practice).

- Lower the cost of a single IPM iteration from $\mathcal{O}(n^3)$ to $\mathcal{O}(n)$.
 Realistically: make only a few matrix-vector prods.

Use Inexact Newton Method

Dembo, Eisenstat & Steihaug,
Exact Newton Method

\[
\begin{bmatrix}
A & 0 & 0 \\
-Q & A^T & I \\
S & 0 & X
\end{bmatrix}
\cdot
\begin{bmatrix}
\Delta x \\
\Delta y \\
\Delta s
\end{bmatrix}
=
\begin{bmatrix}
0 \\
0 \\
\xi
\end{bmatrix}.
\]

Inexact Newton Method

\[
\begin{bmatrix}
A & 0 & 0 \\
-Q & A^T & I \\
S & 0 & X
\end{bmatrix}
\cdot
\begin{bmatrix}
\Delta x \\
\Delta y \\
\Delta s
\end{bmatrix}
=
\begin{bmatrix}
0 \\
0 \\
\xi + r
\end{bmatrix}
\]

allows for an error in the (linearized) complementarity condition only.
General Assumption

The residual r in the inexact Newton Method satisfies:

$$\|r\| \leq \delta \|\xi\|,$$

where $\delta \in (0, 1]$.

What is an acceptable δ?

What happens to the complexity result?
Short-step (Feasible) Algorithm

Stay in the small neighbourhood of the central path

\[\mathcal{N}_2(\theta) := \{(x, y, s) \in \mathcal{F}^0 : \|XS_e - \mu e\|_2 \leq \theta \mu\}. \]

Use inexact Newton Method with the relative error

\[\|r\| \leq \delta \|\xi\|. \]

Aspire to reduce duality gap:

\[\bar{\mu} = (1 - \frac{0.1}{\sqrt{n}}) \mu \]

and achieve the reduction:

\[\bar{\mu} \leq (1 - \frac{0.002}{\sqrt{n}}) \mu. \]
Theorem

Suppose the algorithm operates in $\mathcal{N}_2(\theta)$ neighbourhood of the central path and uses an *inexact* Newton Method with the relative precision $\delta = 0.3$. Then it converges in at most

$$K = \mathcal{O}(\sqrt{n} \log(1/\epsilon))$$

iterations.

Proof (key ideas)

Control the *error* in Newton Method, namely, the terms $\Delta x^T \Delta s$ and $\|\Delta X \Delta S e\|$. Show that if the inexactness in the Newton Method is limited then the *error* satisfies

$$\|\Delta X \Delta S e\| = \mathcal{O}(\mu).$$

Use the *full* Newton step to achieve a sizeable reduction of duality gap in one step.
Conclusion

Replace the **Exact** Newton Method with the **Inexact** Newton Method

Allow for large residual

\[\|r\| \leq \delta \|\xi\| \]

The worst-case complexity result remains the same!
Observation

We have not made any assumption regarding the source of inexactness.

Possible sources of inexactness

- approximate Hessian Q and/or Jacobian A;
- iterative method to compute Newton direction;
- probabilistic approach?
From Theory to Practice

- Compressed Sensing with K. Fountoulakis and P. Zhlobich
- Google Problem with K. Woodsend

both exploit/rely on probabilistic arguments.
Sparse Approximations joint work with Kimon Fountoulakis and Pavel Zhlobich

- Statistics: Estimate \(x \) from observations
- Wavelet-based signal/image reconstr./restoration
- Compressed Sensing (Signal Processing)

Re-cast as large dense quadratic optimization problem:

\[
\min_x \frac{1}{2} \|Ax - b\|_2^2 + \tau \|x\|_1,
\]

where \(A \in \mathbb{R}^{m \times n} \).

The **ML Community** likes this problem very much.
Bayesian Statistics Viewpoint

Estimate x from observations

$$b = Ax + e,$$

where b are observations and e is the Gaussian noise.

$$\rightarrow \min_x \|Ax - b\|_2^2$$

If the prior on x is Laplacian ($\log p(x) = -\lambda \|x\|_1 + K$) then

$$\min_x \|Ax - b\|_2^2 + \tau \|x\|_1$$

Wavelet-based Signal/Image Reconstruction

A has the form $A = RW$, where

- R is the observation operator (think: tomographic projection)
 R is a matrix representation of this operator

- W is a wavelet basis or a redundant dictionary operation Wx corresponds to performing an inverse wavelet transform

- x is the vector representation coefficients of the unknown signal/image

Chen, Donoho & Saunders,
Compressed Sensing

Relatively small number of random projections of a sparse signal can contain most of its salient information.

If a signal is sparse (or approximately sparse) in some orthonormal basis, then an accurate reconstruction can be obtained from random projections of the original signal. A has the form $A = RW$, where

- R is a low-rank randomised sensing matrix
- W is a basis over which the signal has a sparse representation

Candès, Romberg & Tao,
LO/QO Reformulations

\[\min_x \|Ax - b\|^2 + \tau \|x\|_1 \]

or

\[\min_x \|x\|_1 \quad \text{s.t.} \quad \|Ax - b\|_2 \leq \varepsilon \quad (\text{or} \quad Ax = b) \]

or

\[\min_x \|Ax - b\|^2 \quad \text{s.t.} \quad \|x\|_1 \leq t \]

that is

\[\min_x w^T w \quad \text{s.t.} \quad Ax - b = w \quad \text{and} \quad \|x\|_1 \leq t \]
Two-way Orthogonality of A

- **rows** of A are orthogonal to each other (A is built of a subset of rows of an orthonormal matrix $U \in \mathbb{R}^{n \times n}$)

\[AA^T = I_m. \]

- small subsets of **columns** of A are nearly-orthogonal to each other: **Restricted Isometry Property (RIP)**

\[\| A^T \bar{A} - \frac{m}{n}I_k \| \leq \delta_k \in (0, 1). \]

Candès, Romberg & Tao,
Restricted Isometry Property

Matrix $\bar{A} \in \mathcal{R}^{m \times k}$ ($k \ll n$) is built of a subset of columns of $A \in \mathcal{R}^{m \times n}$.

\[
A = \begin{bmatrix}
\vdots \\
\vdots \\
\vdots \\
\end{bmatrix} \quad \rightarrow \quad \bar{A} = \begin{bmatrix}
\vdots \\
\vdots \\
\vdots \\
\end{bmatrix}
\]

\[
\bar{A}^T \bar{A} = \begin{bmatrix}
\vdots \\
\vdots \\
\vdots \\
\end{bmatrix} = \begin{bmatrix}
\vdots \\
\vdots \\
\vdots \\
\end{bmatrix} \approx \frac{m}{n} I_k.
\]

This yields a very well conditioned optimization problem.
Problem Reformulation

\[
\min_{x} \frac{1}{2} \|Ax - b\|^2_2 + \tau \|x\|_1,
\]

Replace \(x = x^+ - x^- \) to be able to use \(|x| = x^+ + x^- \).
Use \(|x_i| = z_i + z_{i+n} \) to replace \(\|x\|_1 \) with \(\|x\|_1 = 1^T_{2n} z \).
(Increases problem dimension from \(n \) to \(2n \).)

\[
\min_{z \geq 0} \frac{1}{2} z^T Q z + c^T z,
\]

where

\[
Q = \begin{bmatrix}
 A^T & -A^T \\
 -A^T & A^T
\end{bmatrix}
\begin{bmatrix}
 A - A
\end{bmatrix} = \begin{bmatrix}
 A^T A & -A^T A \\
 -A^T A & A^T A
\end{bmatrix} \in \mathcal{R}^{2n \times 2n}
\]
Preconditioner

Approximate

\[\mathcal{M} = \begin{bmatrix} A^T A & -A^T A \\ -A^T A & A^T A \end{bmatrix} + \begin{bmatrix} \Theta_1^{-1} \\ \Theta_2^{-1} \end{bmatrix} \]

with

\[\mathcal{P} = \frac{m}{n} \begin{bmatrix} I_n & -I_n \\ -I_n & I_n \end{bmatrix} + \begin{bmatrix} \Theta_1^{-1} \\ \Theta_2^{-1} \end{bmatrix}. \]

We expect (optimal partition):

- \(k \) entries of \(\Theta^{-1} \rightarrow 0, \quad k \ll 2n, \)
- \(2n - k \) entries of \(\Theta^{-1} \rightarrow \infty. \)
Spectral Properties of $\mathcal{P}^{-1}\mathcal{M}$

Theorem

- Exactly n eigenvalues of $\mathcal{P}^{-1}\mathcal{M}$ are 1.
- The remaining n eigenvalues satisfy
 \[|\lambda(\mathcal{P}^{-1}\mathcal{M}) - 1| \leq \delta_k + \frac{n}{m\delta_k L}, \]
 where δ_k is the RIP-constant, and L is a threshold of “large” $(\Theta_1 + \Theta_2)^{-1}$.

Fountoulakis, G., Zhlobich
Preconditioning

Matrix–vector products per CG/PCG call

Spread of $\lambda(M)/\lambda(P^{-1}M)$ per call of CG/PCG

$\lambda(M)$
$\lambda(P^{-1}M)$

good clustering of eigenvalues
Computational Results: Comparing MatVecs

<table>
<thead>
<tr>
<th>Prob size</th>
<th>k</th>
<th>NestA</th>
<th>mf-IPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>4k</td>
<td>51</td>
<td>424</td>
<td>301</td>
</tr>
<tr>
<td>16k</td>
<td>204</td>
<td>461</td>
<td>307</td>
</tr>
<tr>
<td>64k</td>
<td>816</td>
<td>453</td>
<td>407</td>
</tr>
<tr>
<td>256k</td>
<td>3264</td>
<td>589</td>
<td>537</td>
</tr>
<tr>
<td>1M</td>
<td>13056</td>
<td>576</td>
<td>613</td>
</tr>
</tbody>
</table>

NestA, Nesterov’s smoothing gradient

Becker, Bobin and Candés,

http://www-stat.stanford.edu/~candes/nesta/

mf-IPM, Matrix-free IPM

Fountoulakis, G. and Zhlobich,

http://www.maths.ed.ac.uk/ERGO/

Lake Tahoe, December 8, 2012
Ranking of nodes in networks

PageRank
Google Problem
joint work with
Kristian Woodsend

An adjacency matrix \(G \in \mathbb{R}^{n \times n} \) of web-page links is given (web-pages are the nodes). \(G \) is \textit{column-stochastic}.

Teleportation:

\[
M = \lambda G + (1 - \lambda) \frac{1}{n} ee^T,
\]

with \(\lambda \in (0, 1) \), usually \(\lambda = 0.85 \).

Find the \textit{dominant right eigenvector} \(x \) of \(M \) with eigenvalue equal to 1

\[
Mx = x, \quad \text{such that} \quad e^T x = 1, \quad x \geq 0.
\]

and use \(x \) as a \textbf{ranking vector}.

Lake Tahoe, December 8, 2012
Google Problem

\[
\min \quad \frac{1}{2} \|Mx - x\|_2^2 \\
\text{s.t.} \quad e^T x = 1, \quad x \geq 0
\]

Rearrange:

\[
\|Mx - x\|_2^2 = x^T (M - I)^T (M - I)x
\]

to produce a standard QP formulation with

\[
Q = (M - I)^T (M - I).
\]

A very easy QP problem!
Preconditioner for Google Problem

Approximate

\[M = \begin{bmatrix} Q + \Theta^{-1} & e \\ e^T & 0 \end{bmatrix} \]

with

\[P = \begin{bmatrix} D_Q & e \\ e^T & 0 \end{bmatrix}, \]

where \(D_Q = \text{diag}\{Q + \Theta^{-1}\} \).

G., Woodsend
Matrix-free IPM for Google Problems,
Computational Results: mf-IPM

<table>
<thead>
<tr>
<th>Size</th>
<th>degree</th>
<th>IPM-itors</th>
<th>MatVecs</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\lambda = 0.85$</td>
<td>4k</td>
<td>20</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>16k</td>
<td>20</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>64k</td>
<td>20</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>256k</td>
<td>20</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1M</td>
<td>20</td>
<td>3</td>
</tr>
<tr>
<td>$\lambda = 1.0$</td>
<td>4k</td>
<td>20</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>16k</td>
<td>20</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>64k</td>
<td>20</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>256k</td>
<td>20</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1M</td>
<td>20</td>
<td>3</td>
</tr>
</tbody>
</table>

mf-IPM much faster than Nesterov’s smoothing grad.
New IPMs:

- The *inexact* IPM enjoys the same worst-case iteration complexity as the *exact* IPM
- *Matrix-free IPM* solves many difficult problems

The **2nd order information** can (sometimes should) be used in optimization.

Inexact Newton directions in IPMs:

- little (if any) increase of iteration number
- significant reduction of per-iteration cost

Might there be a probabilistic inexact approach?
Thank You!

Matrix-Free IPM:

Augmented System Matrix

Original: \(\mathcal{H} = \begin{bmatrix} -Q - \Theta^{-1} & A^T \\ A & 0 \end{bmatrix} \)

and regularized: \(\mathcal{H}_R = \begin{bmatrix} -(Q + \Theta^{-1} + R_p) & A^T \\ A & R_d \end{bmatrix} \).

Normal Equation Matrix

Original: \(\mathcal{G} = (A(Q + \Theta^{-1})^{-1}A^T) \)

and regularized: \(\mathcal{G}_R = (A(Q + \Theta^{-1} + R_p)^{-1}A^T + R_d) \).

General Case Normal Equation Matrix

Original: \[G = (A(Q + \Theta^{-1})^{-1}A^T) \]

and \textit{regularized}: \[G_R = (A(Q + \Theta^{-1} + R_p)^{-1}A^T + R_d). \]

Use diagonal pivoting to compute

\[
G_R = \begin{bmatrix}
L_{11} & I \\
L_{21} & I
\end{bmatrix}
\begin{bmatrix}
D_L & S \\
S & I
\end{bmatrix}
\begin{bmatrix}
L_{11}^T & L_{21}^T \\
L_{11} & \delta
\end{bmatrix},
\]

\[L = \begin{bmatrix}
L_{11} \\
L_{21}
\end{bmatrix} \text{ is trapezoidal, } k \text{ columns of Cholesky;}
\]

\[S \in \mathcal{R}^{(m-k) \times (m-k)} \text{ is the corresp. Schur complement.} \]

Order diagonal elements of \(D_L \) and \(D_S = \text{diag}(S) \):

\[
\underbrace{d_1 \geq d_2 \geq \cdots \geq d_k}_{D_L} \geq \underbrace{d_{k+1} \geq d_{k+2} \geq \cdots \geq d_m}_{D_S}.
\]
Preconditioner

Use the decomposition

\[
G_R = \begin{bmatrix}
 L_{11} & I \\
 L_{21} & I
\end{bmatrix}
\begin{bmatrix}
 D_L & S \\
 \vdots & \vdots
\end{bmatrix}
\begin{bmatrix}
 L_{11}^T & L_{21}^T \\
 I & I
\end{bmatrix}
\]

and precondition \(G_R \) with

\[
P = \begin{bmatrix}
 L_{11} & I \\
 L_{21} & I
\end{bmatrix}
\begin{bmatrix}
 D_L & D_S \\
 \vdots & \vdots
\end{bmatrix}
\begin{bmatrix}
 L_{11}^T & L_{21}^T \\
 I & I
\end{bmatrix},
\]

where \(D_S \) is a diagonal of \(S \).

Do **not** compute \(S \).
Update only its diagonal.
Preconditioner

Partial Cholesky of NE system

\[G_R = (A(Q + \Theta^{-1} + R_p)^{-1}A^T + R_d) \approx LD_LL^T + D_S \]

- low rank matrix \(L \): \(k \ll m \)
- \(D_L \) contains \(k \) largest pivots of \(G_R \)
Matrix-Free Implementation

\[A\Theta A^T = \]

to build the preconditioner we need only:

- a complete diagonal of \(A\Theta A^T \) \(\rightarrow d_{ii} = r_i^T \Theta r_i \)
- a column \(i \) of \(A\Theta A^T \) \(\rightarrow (A\Theta) \cdot r_i \)

both operations are easy if we access \(r_i^T \) (row \(i \) of \(A \)).

Lake Tahoe, December 8, 2012
Quadratic Assignment Problem, Nugent et al.

LP relaxations of size $m \approx 2 \times N^3$ and $n \approx 8 \times N^3$

Joint work with **Ed Smith** and **J.A.J. Hall**

<table>
<thead>
<tr>
<th>Prob</th>
<th>Cplex 11.0.1</th>
<th></th>
<th>mf-IPM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Simplex its</td>
<td>time</td>
<td>Barrier its</td>
</tr>
<tr>
<td>nug12</td>
<td>96148</td>
<td>187</td>
<td>13</td>
</tr>
<tr>
<td>nug15</td>
<td>387873</td>
<td>2451</td>
<td>16</td>
</tr>
<tr>
<td>nug20</td>
<td>$2.9 \cdot 10^6$</td>
<td>79451</td>
<td>18</td>
</tr>
<tr>
<td>nug30</td>
<td>?</td>
<td>>28 days</td>
<td>- OoM</td>
</tr>
</tbody>
</table>

Mf-IPM solves large problems $N = 40, 50, \ldots, 100$ in **hours**
Einstein-Podolsky-Rosen Paradox, 1935

Following Wikipedia: “[EPR paradox] refutes the dichotomy that either the measurement of a physical quantity in one system must affect the measurement of a physical quantity in another, spatially separate, system or the description of reality given by a wave function must be incomplete.”

Quantum Entanglement:
The measurements performed on spatially separated parts of quantum systems may instantaneously influence each other.

Bell, Physics, 1 (1964) proposed inequalities which allow to capture situations when this happens.
Quantum Information Problems
with Gruca, Hall, Laskowski and Żukowski

<table>
<thead>
<tr>
<th>Prob</th>
<th>Cplex 12.0</th>
<th>mf-IPM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Simplex</td>
<td>Barrier</td>
</tr>
<tr>
<td></td>
<td>its</td>
<td>its</td>
</tr>
<tr>
<td></td>
<td>time</td>
<td>time</td>
</tr>
<tr>
<td>4kx4k</td>
<td>5418</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16kx16k</td>
<td>62772</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64kx64k</td>
<td>2.6·10^6</td>
<td>6h51m</td>
</tr>
<tr>
<td></td>
<td>6h51m</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>256kx256k</td>
<td>>48h</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1Mx1M</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4Mx4M</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Intel Core i7 3.07GHz processor, 24 GB memory

Lake Tahoe, December 8, 2012
General Case (two examples):

- Quadratic Assignment Problems (QAP)
 joint work with Ed Smith and J.A.J. Hall
- Quantum Information Theory Problems
 with Gruca, Hall, Laskowski and Žukowski

Standard approaches (Cplex Simplex and Cplex Barrier) break down on medium problems: $16K \leq m, n \leq 64K$
Matrix-free IPM solves these problems in minutes

MF-IPM solves large problems $m, n \geq 1M$ in hours