Label Propagation for Fine-Grained Cross-Lingual Genre Classification

P. Petrenz B. Webber

THE UNIVERSITY of EDINBURGH

xLiTe Workshop on Cross-Lingual Technologies

07 December 2012
Genre classification can benefit web search
Allows users to filter documents by genre

... and inform NLP applications
Summarization, Word-Sense Disambiguation, Tagging, etc.
Introduction

- Training data available for few languages

- Cross-Lingual techniques
 Exploit labels in another language to predict genres

- Cross-Lingual Genre Classification (CLGC)
 Possible without machine translation (Petrenz 2012)
 Work focused on broad categories (2-4 classes)
Genres are multi-dimensional
Defined by communicative purpose, medium, target audience, topic (?) etc.

Idea: Use separate feature sets
Different feature types used in mono-lingual classification: Structural, lexical, presentational, etc.

Label Propagation
Initially proposed by Xhu & Ghahramani (2002)
Exploits target language texts
Easily adapted to more than one feature space
Features

Cross-Lingual
- Simple statistics (Mean word length, Type/Token ratio etc.)
- Frequencies of 12 universal PoS tags (Petrov et al. 2011)
- Standardized to remove language bias

Target language only

PoS histogram
- Mean and SD for each PoS tag over sliding windows of 5 tags (Feldman et al. 2009)
- Structural feature set

Bag of Words
- Binary representation of word occurrence
- Lexical feature set

Source and target languages
Cross-Lingual

PoS histogram

Bag of Words

Label propagation
Label propagation

Cross-Lingual

PoS histogram

Bag of Words

$r = 1$

$r = 2$

$r = 3$

$r = 4$

$r = 5$
Label propagation

Cross-Lingual

PoS histogram

Bag of Words

\[w_{ij}^f = \exp\left(-\frac{(r_{ij}^f - 1)^2}{2\sigma^2}\right) \]
Label propagation

Cross-Lingual
PoS histogram
Bag of Words
Label propagation

Cross-Lingual
PoS histogram
Bag of Words

$\mathbf{r}_1 = \mathbf{r}_2$
Label propagation

Cross-Lingual

PoS histogram

Bag of Words

\[r = 1 \]

\[r = 2 \]
Label propagation

Cross-Lingual

Cross-Lingual

PoS histogram

Bag of Words

Prior
Label propagation
English, Swedish, and Chinese texts
Sources: BC, SUC, LCMC; 9 genre classes; PoS tagged

Baselines
1. SVM wrapper algorithm (Petrenz 2012)
2. Full text machine translation + mono-lingual classifier
3. Label Propagation with combined feature set
Experiments

Mean F1-Score

Target Language

- English
- Swedish
- Chinese

BL: SVM Wrapper
BL: Machine Translation
BL: Combined Feature Set
LP Iteration 1
LP Converged
Fine-grained CLGC possible
Separate feature sets + exploiting target texts
Label propagation less vulnerable to skewed class distribution than SVM wrapper algorithm

How does it compare to MT based methods?
English, Swedish: LP > MT
Chinese: MT > LP
Future work: Integration of MT based features into LP algorithm, Extension to different language pairs and genres
Thank you!