Grafting-Light: Fast, Incremental Feature Selection and Structure Learning of MRFs

Jun Zhu, Ni Lao, and Eric P. Xing

junzhu@cs.cmu.edu

School of Computer Science, Carnegie Mellon University
(Conditional) Markov Random Fields

- Undirected GMs with sound theoretical foundation (probability + graph theory).
- Have been widely applied in many application domains:
 - Natural language processing [Sha & Pereria, 2003; Smith, 2008], Social network [Shi et al., 2009], Web mining [Zhu et al., 2007], Social network [Shi et al., 2009], Web mining [Zhu et al., 2007], etc.
- Consider Conditional MRFs (CRFs) because of their superior performance [Lafferty et al., 2001].

1. Perform inference on a very sparse graph
2. Very few gradient calculation to converge

Gradient Computation is a Key & Difficult Step:
\[
\frac{\partial L(w)}{\partial y_k} = \sum_{c} \mathbb{E}_{p(y_c|x_n)}[f_k(x_n; y_c)] \sum_{n;c} f_k(x_n; y_{n;c})
\]

Expensive Subroutine (Infer marginal prob)
Hard on dense graphs; denser means more difficult!
Approximation: Loopy BP, Variational/MCMC.

\[p(y_j|x) = \frac{1}{Z(x)} \exp \sum_{c2c} w^c f(x; y_c) \]
Two Problems – FS & SL

- Conditional MRFs (CRFs) can use arbitrary features
 - E.g., in NP-chunking, the total number of features is $>3,000,000$ (N-gram word and N-gram POS tags) [Sha & Pereria, 2003]
- **Feature Selection (FS)**: selecting a subset of features
 - E.g., in NP-chunking, 99.9% features can be discarded with <1% performance decrease in F1 score
 - FS in general is good for generalization and model interpretation

- Hand-crafting MRFs become less applicable as the variety and scale of problems increase
 - E.g., in computer vision, it’s hard to specify a structure among many patches (regions) in a pre-segmented image
- **Structure Learning (SL)**: learning the structures of MRFs
 - SL can automatically discover inherent structures underlying complex data
P1: Feature Selection (FS)

* FS in general:
 - Selecting an optimal set of features in NP-hard [Weston et al., 2003]

* Approximate approaches:
 - Filter methods [Kira & Rendell, 1992] (Separate)
 - Based on feature ranking (individual predictive power);
 - A pre-processing step and independent of prediction models (optimal under very strict assumptions!) [Guyon & Elisseeff, 2003]
 - Wrapper methods [Kohavi & John, 1997] (Half-integrated)
 - Use learning machine as a black box to score subsets of variables according to their predictive power
 - Can waste of resources to do many re-training!
 - Embedded methods (Integrated)
 - Perform FS during the process of training; Usually specific to given learning machines
 - Data efficient and Can avoid many re-training!
FS via L1-norm Regularized Opt.

- Solving a hybrid optimization problem:
 \[
 \min_{M \in H} L(M) + \Omega(M)
 \]
 - Goodness of fit: e.g., training error
 - Measure of model complexity: e.g., \# of non-zero features

- In CRFs, we consider:
 - \(M \) is represented with natural parameters \(w \)
 \[
 \min_{w \in \mathbb{R}^d} L(w) + \Omega(w)
 \]
 - \(L(w) \) is the convex and 2\(^{nd}\)-order differentiable log-loss
 - \(\Omega(w) \) is the L1-norm, which is convex but singular at origin!
P2: Structure Learning (SL) of MRFs

- How is the graph structure constructed?

Approximate Approaches:
- Local heuristic search guided by a scoring function towards improving an objective function, e.g., marginal likelihood [Parise & Welling, 2006]
 - Need parameter estimation at each step
- SL as solving an L1-regularized MCLE problem [Lee et al., 2006; Wainwright et al., 2006]
 - Joint parameter estimation and structure learning
SL via L1-norm Regularized Opt.

- Each possible edge \(e \) is associated with a set of feature functions \(f f_k^e(x; y_e) \).

- Perform feature selection by solving L1-regularized MCLE.

- If the weights of \(f f_k^e(x; y_e) \) are zero, the edge \(e \) doesn’t exist.

\[
\min_{w \in \mathbb{R}^d} L(w) + \lambda \|w\|_1
\]

- Consider all features together will result in a complete graph!
Solving the L1-regularized Opt. in MRFs

\[
\min_{\mathbf{w} \in \mathbb{R}^d} \, L(\mathbf{w}) + \lambda \|\mathbf{w}\|_1
\]

An Ideal Algorithm for MRFs
1. Perform inference on a very sparse graph
2. Very few gradient calculation to converge

- **Batch Methods** *(all features considered together):*
 - Many examples:
 - Quasi-Newton gradient descent methods (OWL-QN) [Andrew & Gao, 2007]
 - Gradient descent + L1-ball projection [Duchi et al. 2008]
 - Stochastic gradient descent [Vishvanathan et al., 2006; Tsuruoka et al., 2009]
 - Gauss-Seidel co-ordinate descent [Shevade & Keerthi, 2003]
 - Can scale up to millions of features, e.g., OWL-QN
 - Not applicable for structure learning
 - Inference on complete graphs can be extremely slow and inaccurate!

- **Incremental Methods:**
 - Start from simple (sparse) model, iteratively add new features
 - Example: Grafting [Perkins et al., 2003]

Grafting-Light
Fast, Incremental Algorithm
Grafting-Light

\[
\begin{align*}
\min_{w \in \mathbb{R}^d} & \quad L(w), \quad L(w) + \lambda k w k \\
\end{align*}
\]

- **Two-step iterative procedure**
 - One-step orthant-wise gradient descent over working set \(S \)

 \[
 \alpha_L(w) = \left\{ \begin{array}{ll}
 \alpha_L(w) + \text{sgn}(w_k); & w_k \neq 0 \\
 \alpha_L(w) + \varepsilon; & w_k = 0; \alpha_L(w) < 0 \\
 \alpha_L(w) - \varepsilon; & w_k = 0; \alpha_L(w) > 0 \\
 0; & w_k = 0; j \not\in \alpha_L(w)j > 0
 \end{array} \right.
 \]

 - Select top \(M \) features from the set \(G \) and add them to \(S \)

 \(G = \{ f_k : f_k \in U \} \) and \(j \not\in \alpha_L(w)j > 0 \)

- \(L(w) \) is differentiable at one orthant
 - Choose an orthant into which \(\alpha_L(w^t) \) leads
 \[
 8k; \quad \varepsilon_k = \begin{cases} \text{sgn}(w_k); & w_k \neq 0 \\ \text{sgn}(\alpha_L(w)); & w_k = 0 \end{cases}
 \]
 - Choose a step-size with backtracking line search
 \[
 d^t = \frac{1}{\lambda} (H_t p^t; e)
 \]
 - Update model weights
 \[
 w^{t+1} = \frac{1}{\lambda} (w^t + \varepsilon d^t; e)
 \]

- \(M \) is the **Select Unit**
 - Choose from inactive features that violate the optimal conditions
 \[
 8k; \quad \varepsilon_k = \begin{cases} \alpha_L(w) + \text{sgn}(w_k) = 0; & w_k \neq 0 \\ j \not\in \alpha_L(w)j > 0 \end{cases}
 \]
Grafting-Light

- **Thrm**: when $L(w)$ is convex, bounded below, and continuously differentiable, Grafting-Light converges to the global optimum.

- Connections to existing algorithms:
 - A lazy version of the incremental Grafting (*converge faster!*)
 - An incremental version of the batch OWL-QN [Andrew & Gao, 2007] (*suitable for learning structures of MRFs*)
Experimental Results

• Tasks:
 • Synthetic data on sequence labeling
 • NP Chunking on CoNLL-2000 data
 • Structure learning of MRFs on OCR characters

• Algorithms to compare:
 • \textit{Incremental} Grafting [Perkins et al., 2003]
 • \textit{Batch} quasi-Newton method [Andrew & Gao, 2007] (Full-L1-Opt.)
 • \textit{Batch} co-ordinate Gauss-Seidel [Shevade & Keerthi, 2003]

• Implementation
 • Standard PC with Intel 2.00 GHz processor
 • C++ programming language
Synthetic Sequence Labeling

- **# Features**: 2000 state features + 4 pairwise dependency features
- **Linear-Chain CRFs**: Gradients and Objective can be exactly computed

- Grafting-L performs as good as optimal Full-Opt-L1 (exact gradient and all info used! Expected to be fastest!)
- Grafting-L is much more efficient than greedy Grafting and co-ordinate Gauss-Seidel (fewer number of gradient computation).
- During training, Grafting-L may include redundant features, but these can be effectively removed when converge!
- Greedy Grafting and Gauss-Seidel can under-fit the data, i.e., selecting fewer number of features.
NP-Chunking on CoNLL-2000

- **# Features**: > 3M (e.g., unigram, bigram word pairs and POS tag pairs, etc.) [Sha & Pereria, 2003]
- **Linear-Chain CRFs**: Gradients and Objective function can be exactly computed by using message-passing.

Grafting-L performs as good as batch Full-Opt-L1, (exact gradient computation!)
Grafting-L is much more efficient than greedy Grafting and co-ordinate Gauss-Seidel (fewer number of gradient computation).

- During training, Grafting-L may include redundant features, but these can be effectively removed when converge!
- Greedy Grafting can under-fit the data, i.e., selecting fewer number of features and **degenerate the performance**.

99.9% features can be **discarded!**
Structure Learning of MRFs

- Performance of different methods on different OCR characters, e.g., S, I, G:
 - 20 x 20 images; Total features: >80,000

- Grafting-Light is consistently more efficient than Grafting and Full-Opt.-L1
 - Greedy Grafting needs much more number of gradient computation
 - Gradient computation in Full-Opt.-L1 is expensive due to the difficult inference on complete graph

- Incremental methods consistently more efficient and accurate than batch methods
 - Full-Opt.-L1 do expensive inference on complete graphs and gradients can be very inaccurate!
Structure Learning of MRFs

- Performance change against Select-Unit (# features selected at each iteration)

- Grafting-Light is consistently more efficient than Grafting and Full-Opt.-L1
- Greedy Grafting needs much more number of gradient computation
- Gradient computation in Full-Opt.-L1 is expensive due to the difficult inference of complete graph

The batch Full-Opt.-L1 doesn’t achieve sparse structures because of inaccurate gradients!
- Incremental methods consistently more efficient and accurate than batch methods
- Full-Opt.-L1 do expensive inference on complete graphs and gradients can be very inaccurate!
Structure Learning of MRFs

- Average image produced from the learned model by different algorithms “ACMSIG”

- The batch Full-Opt.-L1 produces blurry images because of *inaccurate gradient computation* on complete graphs (Non-sparse results!)
Conclusions & Future Work

• Conclusions:
 • We present Grafting-Light: a fast, incremental algorithm for solving the L1-regularized MLE for FS and SL of MRFs
 • We show that:
 • Incremental methods are better than batch methods for feature selection and structure learning of MRFs
 • Message-passing on complete graphs can lead to inaccurate gradients or marginals, which are not good for feature selection or structure learning
 • Grafting-Light is more efficient than the greedy Grafting algorithm

• Future Work:
 • Convergence rate and time complexity analysis
 • Apply to solve non-convex problems, e.g., learning structures of MRFs with latent variables
 • Regularization path analysis and comparison with more existing methods, e.g., stochastic gradient descent, etc.
Thank you!

Poster ID: 11