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What has happened to neural nets 

since 1985 

• Computers got faster. 

 

• Labeled datasets got bigger. 

 

• We found better ways to initialize the weights of 

a deep net using unlabeled data.  

 

• As a result of all three factors, deep neural nets 

are now state of the art for tasks like speech 

recognition and object recognition. 



Is there anything we cannot do with 

very big, deep neural networks? 

• It appears to be hard to do massive model 

averaging: 

– Each net takes a long time to learn. 

– At test time we don’t want to run lots of 

different large neural nets. 



Averaging many models 

• To win a machine learning competition (e.g. Netflix) 

you need to use many different types of model and 

then combine them to make predictions at test time. 

 

• Decision trees are not very powerful models, but 

they are easy to fit to data and very fast at test time.  

– Averaging many decision trees works really well. 

Its called random forests.  

– We can make the individual trees different by 

giving them different training sets.  

 



Two ways to average models 

• We can combine models                                      by 

averaging their                                           output 

probabilities: 

 

 

 

• We can combine models by taking the geometric 

means of their output probabilities: 

 

Model A:    .3   .2   .5 
Model B:    .1   .8   .1 
Combined  .2   .5   .3 

Model A:    .3    .2    .5 
Model B:    .1    .8    .1 

Combined  .03  .16  .05   /sum 
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Dropout: An efficient way to average 

many large neural nets. 

• Consider a neural net with 

one hidden layer. 

• Each time we present a 

training example, we 

randomly omit each hidden 

unit with probability 0.5. 

• So we are randomly 

sampling from 2^H 

different architectures. 

– All architectures share 

weights. 

 



Dropout as a form of model averaging 

• We sample from 2^H models. So only a few of 

the models ever get trained, and they only get 

one training example. 

• The sharing of the weights means that every 

model is very strongly regularized. 

– It’s a much better regularizer than L2 or L1 

penalties that pull the weights towards zero. 

– It pulls the weights towards what other models 

want. 



But what do we do at test time? 

• We could sample many different architectures 

and take the geometric mean of their output 

distributions. 

• Its faster to use all of the hidden units, but to 

halve their outgoing weights. 

– This exactly computes the geometric mean of 

the predictions of all 2^H models. 



What if we have more hidden layers? 

• Use dropout of 0.5 in every layer. 

 

• At test time, use the “mean net” that has all the 

outgoing weights halved. 

 

• This is not exactly the same as averaging all the 

separate dropped out models, but it’s a pretty 

good approximation, and its fast. 



What about the input layer? 

• It helps to use dropout there too, but with a 

higher probability of keeping an input unit. 

– This trick is already used by the “denoising 

autoencoders” developed in Yoshua Bengio’s 

group. 

– It was derived by a different route. 



A familiar example of dropout 

• Do logistic regression, but for each training case, 

dropout all but one of the inputs. 

 

 

 

• At test time, use all of the inputs. 

– Its better to divide the learned weights by the 

number of features, but if we just want the 

best class its unnecessary. 

• This is called “Naïve Bayes”. 

–  Why keep just one input? 



How well does dropout work? 

• If your deep neural net is significantly overfitting, 

it will reduce the number of errors by a lot. 

 

• If your deep neural net is not overfitting you 

should be using a bigger one. 

– The brain is clearly in the regime where  

        # parameters >> # training cases 

• Synapses are cheaper than experiences! 

  

   



Experiments on TIMIT 

(Nitish Srivastava) 

• First pre-train a deep neural network one layer 

at a time on unlabeled windows of acoustic 

coefficients. 

• Then fine-tune it to discriminate between the 

classes using a small learning rate. 

• Standard fine-tuning:  22.7% error on test set 

• Dropout fine-tuning:    19.7% error on test set 

– This was a record for speaker-independent 

methods. 



Experiment on TIMIT 

(Nitish Srivastava) 



The ILSVRC-2012 competition on ImageNet 

• The dataset has 1.2 million 

high-resolution training images. 

• The classification task: 

– Get the “correct” class in 

your top 5 bets. There are 

1000 classes. 

• Some of the best existing 
computer vision methods 
were  tried on this dataset by 
leading computer vision 
groups from Oxford, INRIA, 
XRCE, … 

 



Error rates on the ILSVRC-2012 

competition 

• University of Tokyo              

• Oxford University Vision Group 

• INRIA + XRCE  

 

• University of Amsterdam 

 

• 26.1%    

• 26.9%     

• 27.0% 

 

• 29.5%      

 

• Krizhevsky et. al. • 16.4%    
•   



A better way to think about dropout 

• If a hidden unit knows which other hidden units 

are present, it can co-adapt to them on the 

training data.  

– But complex co-adaptations are likely to go 

wrong on new test data. 

– Big, complex conspiracies are not robust. 

• If a hidden unit has to work well with 

combinatorially many sets of co-workers, it is 

more likely to do something that is individually 

useful, but also marginally useful given what its 

co-workers typically achieve.  



Comparison with Bayesian approach 

• Bayes: Sample lots of separate models from the 

posterior distribution over parameters. 

– At test time, average the predictions of all these 

models. 

 

• Dropout: Learn exponentially many models with 

shared weights. 

– At test time weight all exponentially many models 

equally. 

–  This can be approximated very efficiently. 



An alternative to dropout 

• In dropout, each neuron computes an activity, p, 

using the logistic function. Then it sends p to the 

next layer with a probability of 0.5. 

• This has exactly the same expected value as 

sending 0.5 with probability p.  

– That is exactly what a stochastic binary 

neuron does (if we call 0.5 one spike) 

– So what happens if we use stochastic binary 

neurons in the forward pass but do the 

backward pass as if we had done a “normal” 

forward pass? 



The effect of only sending one bit 

• The deep neural network learns slower and gets 

more errors on the training data. 

–  But it generalizes much better. 

– Its almost as big a win as using dropout. 

 

• Dropout variance          =     p  /4 

• Stochastic bit variance =     p(1-p)/4 

– Stochastic bits have more variance for small p. 

– This is the Poisson limit and resembles neurons 
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An amusing piece of history 

• In 2005 we discovered that deep nets can be pre-

trained effectively on unlabeled data by learning a 

stack of “Restricted Boltzmann Machines”. 

• The pre-training uses stochastic binary units. After 

pre-training we cheat and use backpropagation by 

pretending that they are deterministic units that 

send the real-valued outputs of logistics. 

– We would get less overfitting if we stayed with 

stochastic binary neurons in the forward pass.  



Some explanations for why cortical 

neurons don’t send analog values 

• There is no efficient way for them to do it. 

– But some neurons use the precise times of 

spikes very effectively.  

• Evolution just didn’t figure it out. 

– Evolution had hundreds of millions of years. If 

neurons wanted to send analog values evolution 

would have found a way.  

• Its better to send stochastic spikes because they 

act as a great regularizer.  

– This helps the brain to use a lot of neurons 

without overfitting (10^14 parameters,10^9 seconds)  



 

THE  END OF THIS PART 
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