
Dropout: A simple way to

improve neural networks

Geoffrey Hinton & George Dahl

Department of Computer Science

University of Toronto

What has happened to neural nets

since 1985

• Computers got faster.

• Labeled datasets got bigger.

• We found better ways to initialize the weights of

a deep net using unlabeled data.

• As a result of all three factors, deep neural nets

are now state of the art for tasks like speech

recognition and object recognition.

Is there anything we cannot do with

very big, deep neural networks?

• It appears to be hard to do massive model

averaging:

– Each net takes a long time to learn.

– At test time we don’t want to run lots of

different large neural nets.

Averaging many models

• To win a machine learning competition (e.g. Netflix)

you need to use many different types of model and

then combine them to make predictions at test time.

• Decision trees are not very powerful models, but

they are easy to fit to data and very fast at test time.

– Averaging many decision trees works really well.

Its called random forests.

– We can make the individual trees different by

giving them different training sets.

Two ways to average models

• We can combine models by

averaging their output

probabilities:

• We can combine models by taking the geometric

means of their output probabilities:

Model A: .3 .2 .5
Model B: .1 .8 .1
Combined .2 .5 .3

Model A: .3 .2 .5
Model B: .1 .8 .1

Combined .03 .16 .05 /sum
c
la

s
s
 3

c
la

s
s
 2

c
la

s
s
 1

Dropout: An efficient way to average

many large neural nets.

• Consider a neural net with

one hidden layer.

• Each time we present a

training example, we

randomly omit each hidden

unit with probability 0.5.

• So we are randomly

sampling from 2^H

different architectures.

– All architectures share

weights.

Dropout as a form of model averaging

• We sample from 2^H models. So only a few of

the models ever get trained, and they only get

one training example.

• The sharing of the weights means that every

model is very strongly regularized.

– It’s a much better regularizer than L2 or L1

penalties that pull the weights towards zero.

– It pulls the weights towards what other models

want.

But what do we do at test time?

• We could sample many different architectures

and take the geometric mean of their output

distributions.

• Its faster to use all of the hidden units, but to

halve their outgoing weights.

– This exactly computes the geometric mean of

the predictions of all 2^H models.

What if we have more hidden layers?

• Use dropout of 0.5 in every layer.

• At test time, use the “mean net” that has all the

outgoing weights halved.

• This is not exactly the same as averaging all the

separate dropped out models, but it’s a pretty

good approximation, and its fast.

What about the input layer?

• It helps to use dropout there too, but with a

higher probability of keeping an input unit.

– This trick is already used by the “denoising

autoencoders” developed in Yoshua Bengio’s

group.

– It was derived by a different route.

A familiar example of dropout

• Do logistic regression, but for each training case,

dropout all but one of the inputs.

• At test time, use all of the inputs.

– Its better to divide the learned weights by the

number of features, but if we just want the

best class its unnecessary.

• This is called “Naïve Bayes”.

– Why keep just one input?

How well does dropout work?

• If your deep neural net is significantly overfitting,

it will reduce the number of errors by a lot.

• If your deep neural net is not overfitting you

should be using a bigger one.

– The brain is clearly in the regime where

 # parameters >> # training cases

• Synapses are cheaper than experiences!

Experiments on TIMIT

(Nitish Srivastava)

• First pre-train a deep neural network one layer

at a time on unlabeled windows of acoustic

coefficients.

• Then fine-tune it to discriminate between the

classes using a small learning rate.

• Standard fine-tuning: 22.7% error on test set

• Dropout fine-tuning: 19.7% error on test set

– This was a record for speaker-independent

methods.

Experiment on TIMIT

(Nitish Srivastava)

The ILSVRC-2012 competition on ImageNet

• The dataset has 1.2 million

high-resolution training images.

• The classification task:

– Get the “correct” class in

your top 5 bets. There are

1000 classes.

• Some of the best existing
computer vision methods
were tried on this dataset by
leading computer vision
groups from Oxford, INRIA,
XRCE, …

Error rates on the ILSVRC-2012

competition

• University of Tokyo

• Oxford University Vision Group

• INRIA + XRCE

• University of Amsterdam

• 26.1%

• 26.9%

• 27.0%

• 29.5%

• Krizhevsky et. al. • 16.4%
•

A better way to think about dropout

• If a hidden unit knows which other hidden units

are present, it can co-adapt to them on the

training data.

– But complex co-adaptations are likely to go

wrong on new test data.

– Big, complex conspiracies are not robust.

• If a hidden unit has to work well with

combinatorially many sets of co-workers, it is

more likely to do something that is individually

useful, but also marginally useful given what its

co-workers typically achieve.

Comparison with Bayesian approach

• Bayes: Sample lots of separate models from the

posterior distribution over parameters.

– At test time, average the predictions of all these

models.

• Dropout: Learn exponentially many models with

shared weights.

– At test time weight all exponentially many models

equally.

– This can be approximated very efficiently.

An alternative to dropout

• In dropout, each neuron computes an activity, p,

using the logistic function. Then it sends p to the

next layer with a probability of 0.5.

• This has exactly the same expected value as

sending 0.5 with probability p.

– That is exactly what a stochastic binary

neuron does (if we call 0.5 one spike)

– So what happens if we use stochastic binary

neurons in the forward pass but do the

backward pass as if we had done a “normal”

forward pass?

The effect of only sending one bit

• The deep neural network learns slower and gets

more errors on the training data.

– But it generalizes much better.

– Its almost as big a win as using dropout.

• Dropout variance = p /4

• Stochastic bit variance = p(1-p)/4

– Stochastic bits have more variance for small p.

– This is the Poisson limit and resembles neurons

2

An amusing piece of history

• In 2005 we discovered that deep nets can be pre-

trained effectively on unlabeled data by learning a

stack of “Restricted Boltzmann Machines”.

• The pre-training uses stochastic binary units. After

pre-training we cheat and use backpropagation by

pretending that they are deterministic units that

send the real-valued outputs of logistics.

– We would get less overfitting if we stayed with

stochastic binary neurons in the forward pass.

Some explanations for why cortical

neurons don’t send analog values

• There is no efficient way for them to do it.

– But some neurons use the precise times of

spikes very effectively.

• Evolution just didn’t figure it out.

– Evolution had hundreds of millions of years. If

neurons wanted to send analog values evolution

would have found a way.

• Its better to send stochastic spikes because they

act as a great regularizer.

– This helps the brain to use a lot of neurons

without overfitting (10^14 parameters,10^9 seconds)

THE END OF THIS PART

See my webpage for our paper:

Improving neural networks by preventing

co-adaptation of feature detectors.

Hinton, Srivastava, Krizhevsky, Sutskever

& Salakhutdinov

