Large Linear Classification When Data Cannot Fit In Memory

Hsiang-Fu Yu
Department of Computer Science
National Taiwan University

Joint work with C.-J. Hsieh, K.-W. Chang, and C.-J. Lin
July 27, 2010
Outline

- Introduction
- A Block Minimization Framework for Linear SVMs
- Implementations for SVM
- Techniques to Reduce the Training Time
- Other Functionalities
- Experiments
- Conclusions
Outline

- Introduction
 - A Block Minimization Framework for Linear SVMs
 - Implementations for SVM
 - Techniques to Reduce the Training Time
 - Other Functionalities
 - Experiments
 - Conclusions
Recently linear classification is a popular research topic

By linear we mean that kernel is not used

Though linear may not be as good as nonlinear

for some problems:

accuracy by linear is as good as nonlinear, and

training and testing are much faster

This talk addresses on large linear classification
Motivation

Existing approaches for large linear classification:

- Data smaller than memory:
 Efficient methods are well-developed
- Data beyond disk size:
 Usually handled in a distributed way

Can we have something in the between?

- A simple setting
 \[\text{memory} < \text{data} < \text{disk} \]
- Ferris and Munson (2003) proposed a method, but only for data with \# features \ll \# instances
When Data Cannot Fit In Memory

LIBLINEAR on a machine with 1 GB memory:

Disk swap causes lengthy training time
The Goal

Goal: construct large linear classifiers for ordinary users on a single machine

Assumptions
- memory < data < disk
- Sub-sampling causes lower accuracy

Requirement: must be simple so that it supports
- Multi-class classification
- Parameter selection,
- Other functionalities
Modeling the Training Time

\[\text{train time} = \text{time to train in-memory data} + \text{time to access data from disk} \]

- Now need to pay attention to the second part
- Loading time may dominate the training time even data can fit in memory

\[> \text{./liblinear-1.51/train rcv1_test.binary} \]
rcv1_test.binary: > half millions of documents
Loading time: > 1 minute
Computing time: < 5 seconds
Conditions for a Viable Method

1. Each optimization step reads a *continuous* chunk of training data.
2. The optimization procedure *converges* toward the optimum.
3. The number of optimization steps should not be too large.
Linear SVM as the Linear Classifier

We consider SVM as the linear classifier
- Training data \(\{(y_i, x_i)\}_{i=1}^l, x_i \in \mathbb{R}^n, y_i = \pm 1 \)
- \(n \): \# of features, \(l \): \# of data
- Primal SVM:
 \[
 \min_{w} \frac{1}{2} w^T w + C \sum_{i=1}^{l} \max(0, 1 - y_i w^T x_i)
 \]
- Dual SVM:
 \[
 \min_{\alpha} \frac{1}{2} \alpha^T Q \alpha - e^T \alpha \\
 \text{subject to } 0 \leq \alpha_i \leq C, \forall i,
 \]
- \(e = [1, \ldots, 1]^T \), \(Q_{ij} = y_i y_j x_i^T x_j \)
- \(\alpha \in \mathbb{R}^l \), each \(\alpha_i \) corresponds to \(x_i \)
Outline

- Introduction
- A Block Minimization Framework for Linear SVMs
- Implementations for SVM
- Techniques to Reduce the Training Time
- Other Functionalities
- Experiments
- Conclusions
Algorithm 1

1. Split \(\{1, \ldots, l\} \) to \(B_1, \ldots, B_m \) such that \(B_i \) fits in memory, and store data into \(m \) files accordingly.
2. Set initial \(\alpha \) or \(w \)
3. For \(k = 1, 2, \ldots \) (outer iteration)
 For \(j = 1, \ldots, m \) (inner iteration)
 (a) Read \(x_r, \forall r \in B_j \) from disk
 (b) Conduct operations on \(\{x_r \mid r \in B_j\} \)
 (c) Update \(\alpha \) or \(w \)

Here we do not specify operations on each block
A classical optimization method

- Block of variables
- Widely used in nonlinear SVM
- Here need a connection between a block of data and a block of variables

In the situation, data > memory

- to avoid random access on the disk
- cannot use holistic methods to select block variables

B_1, \ldots, B_m: fixed partition of $\{1, \ldots, l\}$
Number of Blocks and Block Size

How to decide m (number of blocks)

- Assume all blocks have similar size $|B|
- \# \text{ blocks: } m = \frac{l}{|B|}$

Block size

- Cannot be too large: each B_j must fit in memory
- Cannot be too small: should be as large as possible

Total time for an outer iteration:

$$ (T_m(|B|) + T_d(|B|)) \times \frac{l}{|B|} \quad m = \frac{l}{|B|} $$

- $T_m(|B|)$: time cost of one inner iteration in memory
- $T_d(|B|)$: time cost of reading B from disk
- Both $T_m(|B|)$ and $T_d(|B|)$ are functions of $|B|$
Block Size Should Be Large

Total time for an outer iteration:

\[(T_m(|B|) + T_d(|B|)) \times \frac{l}{|B|}\]

Past, \(T_m(|B|)\) only: \(T_m(|B|)\) more than linear to \(|B|\)

- Total time = \(T_m(|B|) \times \frac{l}{|B|}\)

- previous SVM works: smaller \(|B|\) is better

Now, \(T_d(|B|)\) added: \(T_d(|B|)\): initial cost + \(O(|B|)\)

- Total reading time = initial cost \(\times \frac{l}{|B|}\) + \(O(1)\)

- Larger \(|B|\) is better (but can’t exceed memory)
Outline

- Introduction
- A Block Minimization Framework for Linear SVMs
- Implementations for SVM
- Techniques to Reduce the Training Time
- Other Functionalities
- Experiments
- Conclusions
Sub-problem for Dual SVM

Let \(f(\alpha) \) be the dual function:

\[
f(\alpha) \equiv \frac{1}{2} \alpha^T Q \alpha - \mathbf{e}^T \alpha
\]

Each block of variables corresponds to a block of data

\[
\min_{d_{B_j}} f(\alpha + d_{B_j})
\]

s.t. \(d_{\bar{B}_j} = 0 \) and \(0 \leq \alpha_i + d_i \leq C, \forall i \in B_j \)

- \(\bar{B}_j = \{1, \ldots, l\} \setminus B_j \); only \(\alpha_{B_j} \) is changed
- (1) involves all data; handled by some techniques (details omitted)
Algorithm 2 A special case of Algorithm 1

1. Split \{1, \ldots, l\} to \(B_1, \ldots, B_m\) and store data to \(m\) files
2. Set initial \(\alpha\) and \(w\)
3. For \(k = 1, 2, \ldots\) (outer iteration)
 For \(j = 1, \ldots, m\) (inner iteration)
 (a) Read \(x_r, \forall r \in B_j\) from disk
 (b) **Approximately** solve the sub-problem to obtain \(d^*_{B_j}\).
 (c) Update \(\alpha_{B_j} \leftarrow \alpha_{B_j} + d^*_{B_j}\) and \(w\)
Any bound-constrained method can be used

- We consider LIBLINEAR: a coordinate descent method

Two-level block minimization

- Used in some algorithms (e.g., Memisevic, 2006; Pérez-Cruz et al., 2004; Rüping, 2000)

But here *inner* ⇒ memory, *outer* ⇒ disk

- An approximate solution for the sub-problem in practice

Sub-problem *stopping criterion* and *convergence* are issues
Sub-problem Stopping Condition and Overall Convergence

Two approaches

1. A fixed number of passes to all variables in B_j
 Need to decide the number of passes

2. Gradient-based stopping condition
 Easy to know how accurate the sub-problem’s solution is; we use the one in LIBLINEAR

Convergence holds for both conditions (details omitted)
Block Minimization for Primal SVM

Let f^P be the primal function

$$f^P(w) = \frac{1}{2}w^Tw + C \sum_{i=1}^{l} \max(0, 1 - y_i w^T x_i)$$

A block of primal variable w

- corresponds to a subset of features
- no connection to a block of data

Stochastic gradient descent (SGD) approach

- For each update only a block of data is needed
- We use Pegasos (Shalev-Shwartz et al., 2007)
Algorithm 3 A special cases of Algorithm 1

1. Split \(\{1, \ldots, l\} \) to \(B_1, \ldots, B_m \) and store data into \(m \) files accordingly.
2. \(t = 0 \) and initial \(w = 0 \)
3. For \(k = 1, 2, \ldots \)
 For \(j = 1, \ldots, m \)
 (a) Find a partition of \(B_j: B_j^1, \ldots, B_j^{\bar{r}} \)
 (b) For \(r = 1 \ldots, \bar{r} \)
 (b.1) Apply Pegasos update on \(B_j^r \)
 (b.2) \(t \leftarrow t + 1 \)

* \(\bar{r} = 1 \): only one update on the whole block
* \(\bar{r} = |B| \): \(|B| \) updates, one for each data instance
Outline

- Introduction
- A Block Minimization Framework for Linear SVMs
- Implementations for SVM
- Techniques to Reduce the Training Time
- Other Functionalities
- Experiments
- Conclusions
Techniques To Reduce the Training Time

Data compression for disk reading time $T_d(|B|)$

- Except initial time, $T_d(|B|) \propto$ data size $|B|$
- Data compression effectively reduces the disk reading time (Details not shown)

Initial Split of Data

- If original data ordered by labels
 - a whole block with same label
 - \Rightarrow slow convergence
- A random split is needed
Techniques To Reduce the Training Time

Two tasks in the beginning:
- random split
- data compression

Data > memory:
- avoid re-reading data from disk
- A carefully design ensures Random split + data compression by going data only once
Outline

- Introduction
- A Block Minimization Framework for Linear SVMs
- Implementations for SVM
- Techniques to Reduce the Training Time
- Other Functionalities
- Experiments
- Conclusions
Other Functionalities

Due to the simplicity and block design, we can support

- Cross validation
- Multi-class classification
- Incremental/Decremental setting

Details omitted here.
Outline

- Introduction
- A Block Minimization Framework for Linear SVMs
- Implementations for SVM
- Techniques to Reduce the Training Time
- Other Functionalities
- Experiments
- Conclusions
Data and Environment

<table>
<thead>
<tr>
<th>Data set</th>
<th>(l) (data)</th>
<th>(n) (features)</th>
<th>Mem</th>
</tr>
</thead>
<tbody>
<tr>
<td>yahoo-korea</td>
<td>460,554</td>
<td>3,052,939</td>
<td>2.5GB</td>
</tr>
<tr>
<td>webspam</td>
<td>350,000</td>
<td>16,609,143</td>
<td>20.8GB</td>
</tr>
<tr>
<td>epsilon</td>
<td>500,000</td>
<td>2,000</td>
<td>16.0GB</td>
</tr>
</tbody>
</table>

- 64-bit machine with 1 GB RAM
- Data 20 times larger
Compared Methods

BLOCK-⋆-⋆: Block minimization methods.
1. BLOCK-L-\(N\): Solving dual. LIBLINEAR goes through each block \(N\) rounds; \(N = 1, 10, 20\).
2. BLOCK-L-D: Solving dual. LIBLINEAR default stopping condition for each block.
3. BLOCK-P-B: Solving primal. Pegasos on each whole block (one update).
4. BLOCK-P-I: Solving primal. Pegasos on each data instance of the block (\(|B|\) updates).
5. LIBLINEAR: The standard LIBLINEAR without any modification.
Function Value Reduction

webspam

yahoo-korea

Time for initial block split
Function Value Reduction

webspam

yahoo-korea

Proposed methods are faster than LIBLINEAR
Function Value Reduction

webspam

Magnified view

BLOCK-P-⋆ are worse than BLOCK-L-⋆
Function Value Reduction

webspam

Magnified view

BLOCK-P-⋆ are worse than **BLOCK-L-⋆**

BLOCK-P-B: applies **only one** update on each block

Information of a block **underutilized**
Function Value Reduction

Due to long reading time: put more effort on each block
Random split vs. Raw

raw: Data are ordered according to labels
random split: Initial random split
Random split vs. Raw

Random split is useful
Other Experimental Results

Random split vs. Raw

Different block size

m: # of blocks ⇒ smaller m; should use larger $|B|$
Outline

- Introduction
- A Block Minimization Framework for Linear SVMs
- Implementations for SVM
- Techniques to Reduce the Training Time
- Other Functionalities
- Experiments
- Conclusions
Conclusions

- We have proposed methods to effectively handle data 20 times larger than memory.
- Our implementation is available at: http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/#large_linear_classification_when_data_cannot_fit_in_memory
- You can now train pretty large data on your laptop.