Cloud security and OpenStack
Primož Cigoj
Laboratorij za odprte sisteme in mreže
IJS-E5

www.kc-class.eu
Outline

• Cloud computing
 • General overview
 • Deployment and service models

• Security issues
 • Threats
 • CSA / NIST / ENISA
 • Data protection, privacy, cryptography, identity management

• OpenStack
 • Components overview
 • Security issues (identity provisioning, authentication, data protection)

• Conclusion and future work
Cloud computing

• Definitions:
 • Gartner “a style of computing where massively scalable IT-enabled capabilities are delivered 'as a service' to external customers using Internet technologies”
 • NIST “a model for enabling convenient, on-demand network access to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, and services) that can be rapidly provisioned and released with minimal management effort or service provider interaction”

• Main characteristics:
 • Non-functional aspect (among the providers are very different)
 • flexibility, reliability, quality of service (QoS), availability, accessibility
 • Business aspect (an important reason for introducing cloud computing in business organizations)
 • reduce costs, pay-as-you-go model, return on investment (ROI), green IT
 • Technical aspect (realization of non-functional and financial aspects)
 • virtualization, several rental model, security, privacy and regulation compliance, self-service, automation, data management, APIs, software support, development, etc.
Deployment models

• Public cloud
 • services and facilities are available through the internet

• Private cloud
 • designed exclusively for a specific organization (local hosting)

• Hybrid cloud
 • composed of two or more different cloud infrastructure (linked together)
Service models

• Software as a Service (SaaS)
 • provide the consumer with the use of provider’s applications running on a cloud infrastructure

• Platform as a Service (PaaS)
 • a way to rent hardware, on which cloud customers are able to develop and implement applications

• Infrastructure as a Service (IaaS)
 • the consumer can implement any software, including operating system and applications

Present time = A lot of infrastructures:
 • Hyper-V, VMware, Nimbus, OpenStack, etc.
Problem definition

- The biggest obstacle for users in use of cloud is security!
- A popular approach is to create, publish and share server images with other users
- Trust model cloud provider & user is well-defined
 - Amazon is not going to hurt you :)
- What about image provider?
 - Users can create and share images too (blurry ????)
- What about data protection?
 - Admin can access our data, unencrypted data, etc.
Security issues

• When it comes to data hosting by external companies - it is an interesting, economic model, that induces security concerns. Security issues are known, discussed but not resolved entirely.

• CSA / NIST / ENISA

• Threats:
 • Abuse in use of cloud computing
 • Insecure interfaces and APIs
 • Malicious insiders
 • Shared technology issues
 • Data loss or leakage
 • Account or service hijacking
 • Unknown security profile
Data protection

• The main data protection risks:
 • loss of data by third-party service providers
 • unauthorized access to your data
 • malicious activities targeting your service provider (hacking, viruses)
 • poor internal IT security compromising data protection
 • deletion of data
Privacy

• Data storage => Where is located?
• Is the service provider owned or controlled by a foreign company?
• Destruction => What happens when the contract is terminated?
 • Is data destroyed or can be retrieved?
• Who is responsible for protecting privacy?
• Privacy breaches
• Risk management
Cryptography

• When it comes to data encryption, cloud providers still have a long road ahead.

• Alex Staomes, an iSec Partners researcher, claimed that cloud computing should be approached from the cryptographic angle.

• Security questions for cloud providers:
 • Data on write: Are files transferred to/from cloud servers encrypted by default?
 • Data at reset: Are files stored on cloud servers encrypted by default?
 • Data retention: If files on cloud servers are encrypted and there is a request from law enforcement to decrypt data, than what do you do?
Identity management

• Registration of identities
 • organizations that transfer their user accounts in the cloud must make sure to update the management of the user accounts

• Authentication
 • it is important the authentication of users should be managed and implemented in a trustworthy way (one time password or SSO - more protected; classic username and password approach - less protected)

• Authorization
 • specifies what rights every individual user account have in the cloud

• Federation of identities
 • is it possible to establish a single application (SSO)?

• Access control
 • access control requirements vary widely depending on whether the end-user is individual use or an organization.
OpenStack

• OpenSource platform to build private and public clouds.

• We will concentrate on the following:
 • Review of existing components
 • Authentication
 • Authorization
 • Recommendations
• Overview of versions
 • Austin (21. October 2010)
 • Bexar (3. Februar 2011)
 • Cactus (15. April 2011)
 • Diablo (22. September 2011)
 • Essex (5. April 2012)
 • Folsom (Fall 2012)
OpenStack

• **Components**

 • **OpenStack Compute (nova)**
 - Provision and management of large networks of virtual machines.

 • **OpenStack Object Storage (Swift)**
 - Create petabytes of reliable storage using standardized hardware.

 • **OpenStack Image Repository (Glance)**
 - Catalog and manage massive libraries of server images
OpenStack – General overview

<table>
<thead>
<tr>
<th>DIABLO version</th>
<th>Authentication</th>
<th>Authorization</th>
<th>Issues</th>
<th>Suggestions for improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compute</td>
<td>keystone</td>
<td>Token</td>
<td>Simple password / unprotected passwords in novarc file</td>
<td>Password complexity / SSL</td>
</tr>
<tr>
<td>Object Storage</td>
<td>swAuth/tempAuth (keystone)</td>
<td>Token</td>
<td>Unprotected passwords/non-complex passwords</td>
<td>SSL / Password complexity and keystone usage</td>
</tr>
<tr>
<td>Image Service</td>
<td>Keypairs (key pairs)</td>
<td></td>
<td>Keys are publicly accessible, if not stored in the right location</td>
<td>Correct read/write permissions</td>
</tr>
</tbody>
</table>
OpenStack (Object Storage)

• User management is role based
 • Users are not granted to administrate any users themselves
 • Admin can add users to an account which he is allowed to administrate
 • Reseller admin has admin permissions on all of the accounts and cannot add other Reseller admins
 • Super admin is the most powerful user who can perform all user management procedures, including adding Reseller Admins
OpenStack (Object Storage)

<table>
<thead>
<tr>
<th></th>
<th>devAuth</th>
<th>swAuth</th>
<th>tempAuth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Admin (unprotected password)</td>
<td><code>/etc/swift/auth-server.conf</code></td>
<td><code>/etc/swift/proxy-server.conf</code></td>
<td><code>/etc/swift/proxy-server.conf</code></td>
</tr>
<tr>
<td>Users (unprotected passwords)</td>
<td>SQLite DB</td>
<td>JSON-encoded text files</td>
<td><code>/etc/swift/proxy-server.conf</code></td>
</tr>
<tr>
<td>Access to .conf and db files</td>
<td>Anyone</td>
<td>Owner of .conf file</td>
<td>Owner of .conf file</td>
</tr>
<tr>
<td>Used in Diablo version</td>
<td>Dropped</td>
<td>Optional</td>
<td>Built-in</td>
</tr>
<tr>
<td>Admin has access to all date of users</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Object Storage - Passwords

• Current user authentication is not in accordance with CSA
 • Password in plain text format
 • Minimal password length is not determined (only one character can be used)
 • Password complexity
• Weakness in tempAuth identified and reported to OpenStack community
• Solution?
 • Access rights
 • Python module hashlib
 • Encryption of super admin password in .conf file
 • Use of SSL
ObjectStorage – Portability of stored data

- Administrator has the possibility to retrieve authentication data of users
 - 1. step
 - 2. step

- Different types of administrators:
 - Super Admin, Reseller Admin, Admin
 - Reseller Admin
 - can obtain the URL address of existing users
 - can download or even delete files belonging to any user on any of the accounts

- Solution? Data encryption before transmission!
OpenStack - keystone

• OpenStack has recently added support for identity service Keystone

• Currently supports:
 • Authorization with tokens and authorization service
 • Connection with LDAP

• In future versions it will be possible to connect with:
 • OAuth (Open Authorization)
 • openID (Authentication mechanism)

• Data storage in SQLite DB or MySQL
The Keystone Identity Manager

1. Alice wants to launch a server
 - A Temporary Token is created
 - The Temporary Token is provided along the request

2. Alice requests all the tenants she has
 - A generic catalog is sent
 - The Temporary Token is provided along the request

3. Keystone provides Alice her list of Services
 - Keystone sends the Services the tenant has
 - The tenant token is provided
 - Alice determines the correct endpoint to launch a server
 - The token is provided along the request

4. The service verifies Alice's token
 - Is the Token correct?
 - Does it allow that service usage?

5. Keystone provides extra infos along the token
 - Alice's tenant is authorized to access the service
 - The token matches with the request
 - That token belong to the user Alice
 - The service validates the request against its own policy

6. The service executes the request
 - The service creates a new server

7. The server reports the status back to Alice
 - The server has been created
 - The server is reachable here
OpenStack (Tokens)

• Authorization (security token generation)
 • Security tokens in OpenStack play the same role as sessions identifiers for web applications
 • Tokens are stored in /etc/swift/account.ring.gz
 • Python UUID version 4 is used to generate tokens, which use
 • /dev/random (Ubuntu) as a source of randomness
OpenStack – Reliability

- Hazard perception?
 - Server load monitoring
 - CPU, memory etc.
- Isolation of infected
- Disabling access to an attacker
 - Network filtering (firewall)
 - Disabling user account
Recomendation

• ObjectStorage (Swift)
 • For development and testing is recommended to use tempAuth
 • For production is recommended to use swAuth or Keystone
• Password protection
• Data encryption
• Security portal (recently established)
• Subscribe to mailing list
Future work

• Cloud computing has many outstanding security concerns, some are technical, thus involving mechanisms for data processing, reliability, performance, etc.

• Therefore exploration does not STOP there and a lot of work can be done:
 • scripts for checking the security mechanisms for any deployment model in OpenStack (Swift part is done already)
 • SSL connections are set at the first install
 • Single-Sign-On for different cloud platforms and providers