Latent Hough Transform for Object Detection

Nima Razavi Juergen Gall Pushmeet Kohli Luc Van Gool
Detection with the Hough Transform
Accumulation of inconsistent votes

Hough Space (position and scale)
How to enforce consistency of votes?
• Voting for viewpoint?
• Voting for viewpoint?

Facing Right

votes inconsistent in viewpoint are not accumulated

Facing Left
• Voting for type?

What about color, aspect ratio, etc.?
Previous Works

• Voting for other attributes:
 – pose (Seemann’07)
 – viewpoint (Thomas’06, Razavi’10)
 – depth (Sun’10)
 – shapes (Marszalek’08)
 – etc.

• But
 – What attribute to choose?
 – How to quantize it?
 – There is also a cost of annotations
 – We cannot use all attributes together
 • HT does not work well on high dimensions (Stephens’91)
Can we learn the attributes to be consistent over?
Hough Transform

Hough Space

\[H \]

\[x \]

\[y \]

Votes

Image patches
Hough Transform

Latent Space Z

Hough Space \mathcal{H}

Votes s, x, y

Image patches
Latent Hough Transform

Latent Space

Hough Space

\[\mathcal{Z} \times \mathcal{H} \]

Votes

Image patches
Latent Matrix

- Every vote is a patch in a training image (Leibe’08)
Latent Matrix

- Every vote is a patch in a training image (Leibe’08)
Every vote is a patch in a training image (Leibe’08)
Every vote is a patch in a training image (Leibe’08)
A latent grouping can be represented as a matrix
• Every vote is a patch in a training image (Leibe’08)
• A latent grouping can be represented as a matrix

<table>
<thead>
<tr>
<th>Z=1</th>
<th>Z=2</th>
<th>Z=3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Latent Matrix
Every vote is a patch in a training image (Leibe’08).

A latent grouping can be represented as a matrix:

\[
\begin{array}{ccc}
1 & .1 & 1 \\
.2 & 0 & .1 \\
.7 & .9 & 0 \\
\end{array}
\]

Latent Matrix
• The number of votes is very large (~1 M)
• The number of votes is very large (~1 M)
• Votes from the same training image are all consistent
 → we can pre-group them together (~1000)
• The number of votes is very large (~1 M)
• Votes from the same training image are all consistent → we can pre-group them together (~1000)
Interesting Special Cases of our Model
Special Cases of W

• Single Row
 – Hough transform with weighted training examples
Related to Max Margin HT (Maji’09, Zhang’10)
Special Cases of W

- Clustering/Annotations
 - Disjoint grouping with a \{0,1\} matrix
 - Related to Latent SVMs: (Felzenszwalb et al.’10)
Special Cases of W

- One training image per group:
 - Related to Exemplar-SVMs (Malisiewicz et al. ’11)
Special Cases of W

- Uniform weights
 - Equals a single group
Discriminative Learning of W

\[\hat{W} = \arg \max_{W} O(W, R). \]

$O(W, R)$ Objective: average precision on the validation set R

Our objective is non-convex and not even continuous

We do global optimization with a variation of simulated annealing
Experiments

• Setup
 – Two datasets:
 • ETHZ cars dataset (Leibe et al.’06)
 • PASCAL VOC 2007 (Everingham et al.’07)
 – Pre-train a codebook per category only once
 • Using Hough Forests (Gall and Lempitsky’09)
 • The codebook and the offset stay identical
 – Learning W using the validation set
Learning or Annotation?

- ~3000 training images, annotated for 14 views
- Testing on Leuven video sequence (Leibe’07)
Learning or Clustering?

VOC2007 aeroplane

- HT baseline
- Aspect Ratio C2

VOC2007 sheep

- HT baseline
- Aspect Ratio C2

Precision vs. Recall graphs for different categories.
Learning or Clustering?

VOC2007 aeroplane
- HT baseline
- Aspect Ratio C2
- Aspect Ratio C3

VOC2007 sheep
- HT baseline
- Aspect Ratio C2
- Aspect Ratio C3
Learning or Clustering?

VOC2007 aeroplane

- HT baseline
- Aspect Ratio C2
- Aspect Ratio C3
- Aspect Ratio C4

VOC2007 sheep

- HT baseline
- Aspect Ratio C2
- Aspect Ratio C3
- Aspect Ratio C4

Precision vs. Recall graphs for VOC2007 aeroplane and sheep categories with different aspect ratio configurations.
Learning or Clustering?

VOC2007 aeroplane

- HT baseline
- Best clustering
- LHT shared G2

VOC2007 sheep

- HT baseline
- Best clustering
- LHT shared G2
Disjoint or Shared Groups?

Disjoint Groups

Shared Groups
Disjoint or Shared Groups?

Disjoint Groups

Shared Groups
Overall Results

PASCAL VOC 2007

Average Precision (%)

[Bar chart showing average precision for various categories such as Aeroplane, Bicycle, Bird, Boat, Bottle, Bus, Car, Cat, Chair, Cow, Dining Table, Dog, Horse, Motorbike, Person, Potted Plant, Sheep, Sofa, Train, TV/Monitor, and Average. The chart compares two methods: HT baseline and LHT.]
Contributions

•Introduced Latent Hough Transform to enforce consistency of the votes

•Discriminative learning of the latent space for object detection

•State-of-the-art performance for voting based methods
Visualization of Groups
Thank You!