Systems with General Intelligence
—
A New Perspective

Michael Thielscher
Outline

PART I

- A Grand AI Challenge
 General game playing
- Defining your own Grand AI Challenge
 Systems with general intelligence

PART II

- A new research agenda
 Combining representations, methods, systems
How Intelligent are AI Systems?

AI systems are able to
- make autonomous decisions
- adapt flexibly to unforeseen situations

Do they, really?

Most existing AI systems are
- designed for a specific and narrow application
- use tailor-made algorithms

The intelligence lies with the programmers—not their systems
Example: Chess Computers

In the early days, *chess playing* was considered a key to AI

Turk
(Vienna 1770)
Example: Chess Computers

Secret revealed
(1857)
Example: Chess Computers

Chess computers reach human level

Deep Blue
(New York 1997)
Deep Blue was a success story. But also a major leap for AI?

No:

- Chess computers are highly specialised systems
- Deep Blue can't handle anything outside its 64-square world

Deep Blue's capabilities were just not general enough
A Grand AI Challenge: General Game Playing

A **General Game Player** is a system that

- understands description of arbitrary games
- learns to play these games without human intervention

General Game Playing Contest @AAAI since 2005
How it Works

Game Master

Game description
Time to think: 1,800 sec
Time per move: 45 sec
Your role

Player_1

Player_2

...\n
Player_n
How it Works

Game Master

Player_1

Player_2

...

Player_n

Start
How it Works

Game Master

Player_1 \quad Player_2 \quad \ldots \quad Player_n

Your move, please
How it Works

Game Master

Player_1
Player_2
... Player_n

Individual moves
How it Works

Game Master

Player_1 \quad \text{Player}_2 \quad \cdots \quad \text{Player}_n

Individual information about state/moves
How it Works

Game Master

Player_1 \rightarrow \text{Game Master} \rightarrow \text{Player}_2 \rightarrow \ldots \rightarrow \text{Player}_n \rightarrow \text{End of game}
Game Descriptions

Games are described by logic programs using a few pre-defined keywords

\texttt{role(jane).} \\
\texttt{role(rick).} \\
\texttt{role(random).} \\
\texttt{card(\spadesuit 7). card(\spadesuit 8). ... card(\spadesuit ace).} \\
\texttt{init(dealingRound).}
legal(random, deal(C,D)) <= true(dealingRound),
card(C), card(D),
distinct(C,D).

sees(jane, yourCard(C)) <= does(random, deal(C,D)).
sees(rick, yourCard(D)) <= does(random, deal(C,D)).

legal(jane, ...) <= ...
legal(rick, ...) <= ...

terminal <= ...
goal(P, N) <= ...
Example 1

AAAI 2007
Example 2

AAAII 2010
A Vibrant Research Area

History
2005 First GGP Competition @AAAI
2009 First GGP Workshop @IJCAI
2010 First Technical Paper Session on GGP @AAAI

Research centers
Dresden, Edmonton, Paris, Potsdam, Reykjavik, Stanford, Sydney, ...

Online repositories
- games.stanford.edu (description language, competition)
- general-game-playing.de (game server, basic players, literature)
Two Questions

- **Can a general game player beat Deep Blue in chess?**
 - No (but may change in the future)
 - Focus is on general players, not savants
 - There is a market for a chess computer that is weaker but can adapt to any chess variant without being re-programmed

- **Isn't a general game player still a very special system?**
 - Yes, but will change in the future
Some Ideas for General General Game Playing

- **Natural Language**
 - Systems understand game rules in (controlled) English

- **Vision**
 - Camera system identifies new boards and pieces

- **Robotics**
 - Robotic manipulation of game hardware

(Purdue University 2010)
A Continuous Scale

General Chess Computer

General Game Player

General Game Robot
From General Game Playing to General X

The idea behind General Game Playing can be applied to other areas, bringing today's AI systems to a new level of generality.

Systems with general intelligence
- understand descriptions of new environments and tasks
- adapt to these environments/tasks without human intervention

How to create your own General AI Challenge:
- Define a broad—but sufficiently restricted—problem class X
- Design a suitable communication/description language for X
Two Random Ideas

General Trading Agents
- understand new trading scenarios
- trade without human intervention

General Robots
- understand new tasks
- adapt without human intervention
Part II:
Addressing a General AI Challenge
A Brief History of AI

“Silver bullets” have been proposed throughout the history, eg

- GOFAI (1960's)
- Sub-symbolic AI (1980's)
- Bayesian AI (1990's)

but:

- different problems may require different representations
- different tasks may require different computations
AI Today

Individual theories cater for individual aspects of intelligence

- Symbolic AI
 - NLP
 - KR
 - NMR
 - Agents
 - BDI
 - Action Logics
 - SitCalc
 - Event Calculus
 - Planning
 - Fluent Calculus

- Sub-symbolic AI
 - UAI
 - DL
Specialization: Pro

Focusing on a single, narrow AI problem allows to

- use a tailor-made representation
- gain a deeper understanding of the fundamental and computational issues related to this particular aspect of AI

Today, there exist a variety of

- well-understood approaches—for many individual aspects of AI
- highly optimized algorithmic solutions—to many specific problems
Specialization: Cons

- There is a danger to fiddle with minor details

- AI Challenges require to address a range of aspects together
 - Challenge 1: combine different representations
 - Challenge 2: integrate different implementations
Programs or robots with general intelligence (GI) must exhibit many facets of intelligence.

→ need to integrate successful AI methods

Top-Down
- Take well-defined GI challenge
 - identify sub-tasks
 - choose methods to combine
 - build integrated system

Bottom-Up
- Choose and combine
 - representation formalisms
 - algorithmic solutions
 - implementations
Top-Down Combinations (Example)

—

FLUXPLAYER
A General Game Player requires methods from

- Knowledge Representation and Reasoning
- Planning and Search
- Computer Game Playing
- Learning
Our General Game Player FLUXPLAYER combines

- Reasoning about Actions ("FLUX", to understand the game rules)
- Planning and Search
- Automated Theorem Proving (to generate knowledge about a game)
- Fuzzy Logic (to evaluate intermediate positions)
- Neural Nets (to improve parameter settings of evaluation functions)

FLUXPLAYER's performance in all previous GGP Championships

- **IJCAI**: 2009 Second
Two examples of research output from this Grand Challenge

- **Answer Set Programming for verification of dynamic systems**
 (Schiffel & T, IJCAI 2009; T & Voigt, AAAI 2010)

- **Combining Neural Networks with Symbolic Logic**
 (Michulke & T, ECML 2009)
Bottom-Up Combination: Example

BDI-Based Agent Programs & Action Logics
Combining Formalisms

AI

Symbolic AI

Sub-symbolic AI

NLP

KR

Bayesian

NMR

Agents

DL

BDI

Action Logics

Planning

SitCalc

Event Calculus

Fluent Calculus
Two Distinct Areas with a Similar Goal

BDI-based Programming
- since early 1990's
- to build cognitive agents

Action Logics
- since late 1960's
- theory of cognitive agents
Similarly Goal—Different Strengths

BDI-based Programming
- practical programming
 - simplistic action model

Action Logics
- rich action model
 - barely used in practice
Why Combine the Two?

BDI-based Programming

+ practical programming
- simplistic action model

Action Logics

+ rich action model
- barely used in practice
Need to Align Representations

Main issue: two methods based on different representations

- Agent programs are collections of reactive behaviors

\[+!\text{capture}(X) : \neg\text{have}(X) | !\text{nextto}(X); \text{get}(X); !\text{at}(\text{home}) \]

- Action knowledge is given in form of logical formulas

\[
\text{poss} (\text{get}(X), S) \equiv \text{holds} (\text{nextto}(X), S) \\
\text{holds} (\text{have}(X), \text{do}(A, S)) \subseteq A = \text{get}(X) \lor \text{holds} (\text{have}(X), S)
\]

- Reactive programs come with operational semantics, based on the (Beliefs, Desires, Intentions)-model of agents

- Action theories have declarative semantics, based on logic
Solution

A bridging language helps aligning the two representations

- Agent Logic Programs
 - extend logic programs (Prolog) by actions
 - come with an operational semantics
 - and with a declarative semantics

- Resulting integration
 - provides declarative semantics for BDI-based languages
 - provides formal underpinnings for combining implementations
 - is correct—provided 8(!) assumptions and conditions are met

(MT, KR 2010)
Conclusion
First Demonstration of AI

Turk
(Vienna 1770)
Future Demonstrations of AI

Systems with general intelligence
- understand descriptions of radically new environments/tasks
- adapt to these environments/tasks without human intervention

When built, these systems
- provide impressive demonstrations of AI's potential
- lift a specific AI field to a new level

To do so,
- the technology is out there
- but combining AI methods can be a challenge of its own