Liquid Crystal Colloids: Functionalization of Inclusions and Continuum

M. Ravnik1,2, I. Musevic3,2, J. M. Yeomans1, S. Zumer2,3

1 University of Oxford, Oxford, UK
2 University of Ljubljana, Ljubljana, SI
3 Josef Stefan Institute, Ljubljana, SI

Support of the EC under the Marie Curie project ACTOIDS is acknowledged. The contents reflect only the author’s views and not the views of the EC.
Outline

@ introduction
@ theory and modeling
@ functionalization of inclusions: role of shape, Janus surface anchoring profile, topological charge, surface structure
@ functionalization of continuum: material activity and confinement
@ conclusion
Introduction - Colloids: Assembly

Various types of materials and (self)assembly:

Droplets: Phase separation

![Image of droplets phase separation](image)

Droplets: Surface trapping

![Image of droplets surface trapping](image)

Solid beads: Optical tweezers

![Image of optical tweezers](image)

Solid beads: Electrophoresis

![Image of electrophoresis](image)

Introduction - Nematodynamics & Activity

Materials have internal motility (e.g. swarms of bacteria):

- Nematodynamics

Design flow states
Bio-patterns

Kibble mechanism; Defect dynamics

Dombrowski et al, PRL 2004
Dreyfus et al, Nature 2005

FIG. 1. Bioconvection in a sessile drop of diameter 1 cm. Top: images 5 min apart show the traveling-wave bio-Boycott convection that appears first at the drop edge. Bottom: images 2 min apart show self-concentration seen from above, beginning as vertical plumes which migrate outward.
Order parameter tensor:

\[Q_{ij} = \frac{S}{2} (3n_in_j - \delta_{ij}) + \frac{P}{2} (e_i^{(1)} e_j^{(1)} - e_i^{(2)} e_j^{(2)}) \]

I. Equilibrium physics of static NLC

\[F = \frac{1}{2} L \int_{LC} \left(\frac{\partial Q_{ij}}{\partial x_k} \right) \left(\frac{\partial Q_{ij}}{\partial x_k} \right) dV \]
\[+ \int_{LC} \left(\frac{1}{2} A Q_{ij} Q_{ji} + \frac{1}{3} B Q_{ij} Q_{jk} Q_{ki} + \frac{1}{4} C (Q_{ij} Q_{ji})^2 \right) dV \]
\[+ \frac{1}{2} W \int_{Surf.Col.} (Q_{ij} - Q_{ij}^0) (Q_{ji} - Q_{ji}^0) dS \]

Numerical relaxation on cubic mesh:

- **Euler-Lagrange equations**
 \[\frac{d}{dx_k} \frac{\partial F}{\partial Q_{ij}} - \frac{\partial F}{\partial Q_{ij}} = u_{ij}^{(bulk)} = 0 \]
 \[\frac{\partial F}{\partial Q_{ij}} \cdot \nu_k = u_{ij}^{surf.} = 0 \]

- **Relaxation algorithm**
 \[\gamma \frac{d Q_{ij}}{dt} = u_{ij} \]

- **Equilibrium order parameter tensor profile**

5 degrees of freedom: director, degree of order, secondary director, biaxallity

II. Nematodynamics + Activity

Hybrid Lattice Boltzmann algorithm: finite differences for Q dynamics and LB for Navier-Stokes flow dynamics.

\[
(\partial_t + \vec{u} \cdot \nabla)Q - S(W, Q) = \Gamma H + \lambda \Delta \mu Q
\]

Material derivative \(\text{LC alignment in flow (tumbling/aligning)}\)

\[
\rho (\partial_t + u_\beta \partial_\beta) u_\alpha
\]

\[
= \partial_\beta (\Pi_{\alpha\beta}) + \eta \partial_\beta (\partial_\alpha u_\beta + \partial_\beta u_\alpha + (1 - 3\partial_\rho P_0) \partial_\gamma u_\gamma \delta_{\alpha\beta})
\]

Stress tensor \(\text{viscosity possible compressibility}\)

Distribution functions \(f_i\):

\[
\rho = \sum_i f_i, \quad \rho u_\alpha = \sum_i f_i e_{i\alpha},
\]

Streaming and collision:

\[
f_i(x + e_i \Delta t, t + \Delta t) - f_i(x, t) = \frac{1}{2} \Delta t [C_{f_i}(x, t, \{f_i\}) + C_{f_i}(x + e_i \Delta t, t + \Delta t, \{f_i\})]
\]

\[
C_{f_i}(x, t, \{f_i\}) = -\frac{1}{\tau_f} (f_i(x, t) - f_i^{\text{eq}}(x, t, \{f_i\})) + p_i(x, t, \{f_i\})
\]

Numerical parameters and characteristics:

- coupled cubic mesh (10nm and 100nm)
- parallel multi-thread computer code
- typical number of mesh points:
 few 100 x few 100 x few 100 = few 10^7 (max: 600 x 600 x 600 = 2×10^8)
- basic parameter values: $\xi_N = 6.63$nm, $S_{\text{bulk}} = 0.533$, strong surf. anchor.

Nematodynamics vs equilibrium static nematic:

- memory requirements increase by $\sim 10x$
- evaluation time increases by ~ 10-100x; (for equal number of evaluation steps)
- crucial coupling of LC and LB time scale (stability)
- activity is effectively introduced by single phenomenological parameter in stress tensor
 \[\Pi_{\alpha\beta} = \Pi_{\alpha\beta}^{\text{passive}} + \Pi_{\alpha\beta}^{\text{active}} \]
 \[\Pi_{\alpha\beta}^{\text{active}} = \zeta \Delta \mu Q_{\alpha\beta} \]
 (can be switched-off to yield passive nematodynamics)
Particle shape - ellipsoids

Ellipsoidal particles can break symmetry of the director:

parallel inclination

anti-parallel inclination
Janus particles

Functionalization of particles by surface anchoring design

- Gold deposition
- Planar anchoring
- DMOAP hometropic surfactant

Crossed polars
Opt. microsc.
Retardation plate
Janus particles

Bistability in (meta)stable particle orientations

Energy minima can be tuned by relative surface anchoring strengths.

Possible application: light shutter
"Higher-order" Janus particles

Particles with homeotropic/planar surface patches:

Structure: tiles of director corresponding to relevant surface patches.

Controllable torques and equilibrium orientation.

(e) Free energy ($10^5 kT$) vs. Symmetry axis angle (°)
By generalizing topological anchoring profile, spherical particles with higher-than-one topological charge can be designed:
Topological charge 2 particles

Two possible compensations:

Bonuses: director is analytically given at the particle surface hence it changes can be analytically followed along the full loop.
Tuning interparticle potential

Elastic dipoles and quadrupoles

\[
V_{PP}(\mathbf{R}) = \frac{1}{R^8} (1 - 3 \cos^3 \theta)
\]

\[
V_{CC}(\mathbf{R}) = \frac{1}{R^8} (9 - 90 \cos^2 \theta + 105 \cos^4 \theta)
\]

I. Particle shape / director symmetry

![Graph showing force vs. distance for different W values.]

\[F \propto 1/R^n \]

fit for \(W = 10^{-2} \text{ J/m}^2 \): \(n = 2.02 \)

fit for \(W = 10^{-2} \text{ J/m}^2 \): \(n = 2.1 \)

II. Confinement

\[\nabla^2 n_\mu = 0 \]

\[n_\mu = \sum_n \sin \left(\frac{n\pi z}{h} \right) \left[A_n I_n \left(\frac{n\pi}{h} \rho \right) + B_n K_n \left(\frac{n\pi}{h} \rho \right) \right] \]

\[K_n(x) = \sqrt{\frac{\pi}{2x}} e^{-x} \]
Active flow profiles in planar nematic cell with thickness of 2 μm. 2D in-plane flow profiles:

\[
\begin{align*}
\zeta &= 0.2 \\
\zeta &= 0.3 \\
\zeta &= 0.4
\end{align*}
\]
3D flow profiles are found.

\[\zeta = 0.001 \quad \text{inplane} \]

\[\zeta = 0.01 \]

\[\zeta = 0.1 \]

\[\text{helical} \]

Activity

Flow can be steared by designing 3D profile of nematic director. Alternatively, orientation can be controlled by imposing flow profile.

--> full backflow coupling between Q and u.
Active liquid crystal colloids

Mechanisms for steering material flow via backflow coupling:

In-situ assembly of microfluidic elements:
Conclusions

Functionalization of particles: shape, surface anchoring, surface profile, topological charge

Functionalization of bulk: activity, flow steering, confinement, colloids

Future work: dynamics and photonics of colloidal structures, active materials.