Hybrid Multi-view reconstruction by Jump-Diffusion

Florent Lafarge¹,² Renaud Keriven¹ Mathieu Brédif³ Vu Hoang Hiep¹

¹ Imagine group/LIGM, Université Paris Est
² INRIA Sophia Antipolis
³ French Mapping Agency
Urban scene modeling

Mesh-based representations

- **details**
- **generality**

[Seitz et al., cvpr06] [Furukawa and Ponce, iccv07] [Goesele et al. iccv07] [Strecha et al., cvpr08] [Pollefeys et al., ijcv08] [Vu et al., cvpr09]...
Urban scene modeling

Mesh-based representations

♦ details
♦ generality

[Seitz et al., cvpr06] [Furukawa and Ponce, iccv07]
[Goesele et al. iccv07] [Strecha et al., cvpr08]
[Pollefeys et al., ijcv08] [Vu et al., cvpr09]...

Primitive-based representations

♦ compaction
♦ semantic

[Dick et al., ijcv04] [Muller et al., siggraph06]
[Zebedin et al., eccv08] [Lafarge et al., cvpr08]
[Sinha et al., iccv09] [Zhou and Neumann, cvpr09] ...
Urban scene modeling

Mesh-based representations

- details
- generality

[Seitz et al., cvpr06] [Furukawa and Ponce, iccv07] [Goesele et al. iccv07] [Strecha et al., cvpr08] [Pollefeys et al., ijcv08] [Vu et al., cvpr09]...

Primitive-based representations

- compaction
- semantic

[Dick et al., ijcv04] [Muller et al., siggraph06] [Zebedin et al., eccv08] [Lafarge et al., cvpr08] [Sinha et al., iccv09] [Zhou and Neumann, cvpr09]...

Why not combining these two types of representations?
Hybrid representation
Hybrid representation

Primitives to describe regular structures (walls, columns...)
Hybrid representation

Primitives to describe regular structures (walls, columns...)

Mesh patches to describe irregular elements (statues, ornaments...)

[Introduction] [Mesh segmentation] [Hybrid sampling] [Iterative refinement] [Experiments]
Hybrid representation

Primitives to describe regular structures (walls, columns...)

Mesh patches to describe irregular elements (statues, ornaments...)

compaction while preserving details
Hybrid representation

Primitives to describe regular structures (walls, columns...)

Mesh patches to describe irregular elements (statues, ornaments...)

compaction while preserving details

An idea still lightly explored

- Ransac-based primitive extraction from point clouds + meshing [Labatut et al., 3DIM09]
 - fails to describe details (outliers)
 - no priors on primitive layouts
Hybrid representation

Primitives to describe regular structures (walls, columns...)

Mesh patches to describe irregular elements (statues, ornaments...)

compaction while preserving details

An idea still lightly explored

♦ Ransac-based primitive extraction from point clouds + meshing [Labatut et al., 3DIM09]
 • fails to describe details (outliers)
 • no priors on primitive layouts

♦ Primitive insertion in meshes [Lafarge et al., BMVC09]
 • limited accuracy (no photo-consistency)
 • high quality mesh required as input
Contributions

- **mesh and 3D-primitive joint sampler**

 mesh patches and 3D-primitives evolve and interact in a common framework
Contributions

♦ **mesh and 3D-primitive joint sampler**
 mesh patches and 3D-primitives evolve and interact in a common framework

♦ **shape layout prior in urban scenes**
 introduction of urban knowledge by favoring certain shape layouts according to parallelism/perpendicularity and repetitiveness properties
Contributions

♦ mesh and 3D-primitive joint sampler
 mesh patches and 3D-primitives evolve and interact in a common framework

♦ shape layout prior in urban scenes
 introduction of urban knowledge by favoring certain shape layouts according to parallelism/perpendicularity and repetitiveness properties

♦ efficient global optimization
 Jump-Diffusion allows the escape from local minima thanks to stochastic relaxation while gradient descent based dynamics guarantee fast local explorations
System overview

INPUT

- multi-view stereo images
- a rough initial surface
System overview

INPUT

♦ multi-view stereo images
♦ a rough initial surface

OUTPUT

a hybrid surface combining mesh patches and 3D-primitives
System overview

INPUT
- multi-view stereo images
- a rough initial surface

OUTPUT
a hybrid surface combining mesh patches and 3D-primitives

Introduction

[Mesh segmentation]

[Hybrid sampling]

[Iterative refinement]

[Experiments]
Mesh segmentation

Initial mesh based surface (1st iteration)

Mesh segmentation

Hybrid sampling

Mesh subdivision

Primitives

Mesh patches

Primitive accumulation

Hybrid model (after n iterations)
Partitioning non-synthetic meshes

Surface characteristics

♦ frequent meshing degeneracies
Partitioning non-synthetic meshes

Surface characteristics

- frequent meshing degeneracies
- significant noise corruption
Partitioning non-synthetic meshes

Surface characteristics

♦ frequent meshing degeneracies

♦ significant noise corruption

segmentation algorithm for non-synthetic meshes [Lafarge et al., BMVC09]
A multi-label MRF model

\[U_{\text{seg}}(l) = \sum_{i \in V} D_i(l_i) + \beta \sum_{\{i,j\} \in E} V_{ij}(l_i, l_j) \]
A multi-label MRF model

\[U_{\text{seg}}(l) = \sum_{i \in V} D_i(l_i) + \beta \sum_{\{i,j\} \in E} V_{ij}(l_i, l_j) \]

♦ data term
principal curvature distributions
A multi-label MRF model

\[U_{\text{seg}}(l) = \sum_{i \in V} D_i(l_i) + \beta \sum_{\{i,j\} \in E} V_{ij}(l_i, l_j) \]

- data term
 - principal curvature distributions

- propagation constraints
 - label consistency
 - edge preservation
A multi-label MRF model

\[U_{\text{seg}}(l) = \sum_{i \in V} D_i(l_i) + \beta \sum_{\{i,j\} \in E} V_{ij}(l_i, l_j) \]

- data term
 principal curvature distributions

- propagation constraints
 - label consistency
 - edge preservation

- optimization
 \(\alpha \)-expansion [Boykov et al., pami01]
Interesting points

- robust when faced with noise corruption and facet degeneracies
Interesting points

- robust when faced with noise corruption and facet degeneracies
- adapted to different mesh densities
Interesting points

- robust when faced with noise corruption and facet degeneracies
- adapted to different mesh densities
- eventual errors do not have critical consequences on the final result
Hybrid sampling
3D-objects and configuration space

- 6 types of 3D-objects
 - *plane, cylinder, cone, sphere, torus* and *mesh*
3D-objects and configuration space

♦ 6 types of 3D-objects
 plane, cylinder, cone, sphere, torus and mesh

♦ a hybrid model x
 a set of 3D-objects, each of them associated with a cluster of the segmented initial surface
3D-objects and configuration space

- **6 types of 3D-objects**
 - \(plane, cylinder, cone, sphere, torus \) and \(mesh \)

- **a hybrid model** \(x \)
 - a set of 3D-objects, each of them associated with a cluster of the segmented initial surface

- **the configuration space**
 - a union of \(6^N \) continuous subspaces, each subspace containing a predefined object type per cluster
3D-objects and configuration space

- 6 types of 3D-objects
 plane, cylinder, cone, sphere, torus and mesh

- a hybrid model \(x \)
 a set of 3D-objects, each of them associated with a cluster of the segmented initial surface

- the configuration space
 a union of \(6^N \) continuous subspaces, each subspace containing a predefined object type per cluster

- an energy \(U \)
 a measure of the quality of a hybrid model \(x \)
Energy formulation

\[U(x) = U_{\text{photo}}(x) + U_{\text{smooth}}(x) + U_{\text{shape}}(x) \]
Energy formulation

\[U(x) = U_{\text{photo}}(x) + U_{\text{smooth}}(x) + U_{\text{shape}}(x) \]

- Photo-consistency
 based on computation of the image back-projection error with respect to the object surface [Pons et al., ijcv07]
Energy formulation

\[U(x) = U_{\text{photo}}(x) + U_{\text{smooth}}(x) + U_{\text{shape}}(x) \]

- **Photo-consistency**
 based on computation of the image back-projection error with respect to the object surface [Pons et al., ijcv07]

- **mesh smoothness**
 smoothness constraints penalizing strong bending
Energy formulation

\[U(x) = U_{\text{photo}}(x) + U_{\text{smooth}}(x) + U_{\text{shape}}(x) \]

- **Photo-consistency**
 based on computation of the image back-projection error with respect to the object surface [Pons et al., ijcv07]

- **mesh smoothness**
 smoothness constraints penalizing strong bending

- **shape layout**
 urban knowledge favoring special layouts of primitives:
 - perpendicular and parallel structures
 - primitive repetition
Energy formulation

\[U(x) = U_{photo}(x) + U_{smooth}(x) + U_{shape}(x) \]

- Photo-consistency
 based on computation of the image back-projection error with respect to the object surface [Pons et al., ijcv07]

- mesh smoothness
 smoothness constraints penalizing strong bending

- shape layout
 urban knowledge favoring special layouts of primitives:
 - perpendicular and parallel structures
 - primitive repetition

→ Energy not convex!
Jump-Diffusion

Algorithm [Grenander and Miller, 94]

♦ combination of 2 types of dynamics
 • MCMC: performs jumps between the subspaces
 • Langevin equations: diffusions within each continuous subspace

♦ a relaxation parameter controls the global process
Jump-Diffusion

Algorithm [Grenander and Miller, 94]

- combination of 2 types of dynamics
 - MCMC: performs jumps between the subspaces
 - Langevin equations: diffusions within each continuous subspace
- a relaxation parameter controls the global process

In our case,

- switching kernel: jumps from an object type to another
- mesh adaptation: evolution of the mesh-based object by variational considerations
- primitive competition: selection of relevant parameters for the primitive-based objects
Iterative refinement
Primitive accumulation and mesh subdivision

- **Hybrid models at different scales**

 First iterations: main regular structures and rough mesh patches
 Last iterations: structures at various scales and fine meshing
Primitive accumulation and mesh subdivision

- **Hybrid models at different scales**

 First iterations: main regular structures and rough mesh patches

 Last iterations: structures at various scales and fine meshing

- **Self-correction**

 The irrelevant clusters are corrected at the next iterations as a result of a more accurate re-meshing
Experiments
Facades and roofs

COLOR CODE

white: mesh purple: plane pink: cylinder blue: cone yellow: sphere green: torus
Facades and roofs

COLOR CODE
white: mesh purple: plane pink: cylinder blue: cone yellow: sphere green: torus
Facades and roofs

COLOR CODE

white: mesh purple: plane pink: cylinder blue: cone yellow: sphere green: torus

images

low resolution (first iterations)

high resolution (last iterations)
Rock sculture

- statues: mesh patches
- rock facets and pipes: primitives
Rock sculpture

statues: partially described by small primitives
Comparison with mesh-based multi-view algorithms

Accuracy

[strecha et al., cvpr08]

♦ 1st and 2nd best accuracies on Herz-Jesu-P25 and Entry-P10 data sets
Comparison with mesh-based multi-view algorithms

Accuracy

Trompe l’œil textures

Wall correctly modeled by a plane
Comparison with mesh-based multi-view algorithms

Accuracy

Trompe l’œil textures

- wall correctly modeled by a plane
- wall corrupted by an important noise
Comparison with mesh-based multi-view algorithms

Accuracy

Partially occluded component

- Ground truth
- Hybrid model
- Vu et al.
- Salman et al.

← column correctly modeled by a cylinder
Comparison with mesh-based multi-view algorithms

Accuracy

Partially occluded component

- column correctly modeled by a cylinder
- column with missing parts
Comparison with mesh-based multi-view algorithms

Compaction

<table>
<thead>
<tr>
<th></th>
<th>initial surface</th>
<th>LR hybrid model</th>
<th>HR hybrid model</th>
<th>storage saving rates w.r.t. [vu et al.,09]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entry-P10 (10 images)</td>
<td>9K vert. 16K fac.</td>
<td>51 prim. 20K vert. 37K fac.</td>
<td>342 prim. 0.33M vert. 0.62M fac.</td>
<td>LR: 26.4 HR: 5.7</td>
</tr>
<tr>
<td>Calvary (27 images)</td>
<td>23K vert. 47K fac.</td>
<td>37 prim. 56K vert. 0.11M fac.</td>
<td>426 prim. 0.55M vert. 1.04M fac.</td>
<td>LR: 17.7 HR: 4.3</td>
</tr>
<tr>
<td>Herz-Jesu-P25 (25 images)</td>
<td>14K vert. 17K fac.</td>
<td>41 prim. 42K vert. 77K fac.</td>
<td>263 prim. 0.38M vert. 0.74M fac.</td>
<td>LR: 21 HR: 5.2</td>
</tr>
<tr>
<td>Church (37 images)</td>
<td>21K vert. 34K fac.</td>
<td>143prim. 82K vert. 0.15M fac.</td>
<td>406 prim. 0.13M vert. 0.22M fac.</td>
<td>LR: 22.9 HR: 4.9</td>
</tr>
</tbody>
</table>

♦ storage saving rates: around 5 at high resolution
Other interesting points

occurrence of primitives w.r.t. mesh patches

high

low
Other interesting points

occurrence of primitives w.r.t. mesh patches
Conclusion

- both compact and detailed
- accuracy similar to the best mesh based multi-view algorithms
- partially semantized (occluded structures, *trompe l’œil* textures...)

Perspectives

- improving the shape layout prior (more constraints on structure repetitions)
- embedding the segmentation step into the sampling procedure
Thank you!

(Also in poster version this evening)

Acknowledgements

- Funding: EADS foundation
- Datasets: C. Strecha and B. Curless
initial rough surface

hybrid model

textured hybrid model