A Metric Notion of Dimension and Its Applications to Learning

Robert Krauthgamer (Weizmann Institute)

Based on joint works with Lee-Ad Gottlieb, James Lee, and Aryeh Kontorovich
Finite metric spaces

\((X,d)\) is a metric space if

- \(X\) = set of points
- \(d\) = distance function
 - Nonnegative
 - Symmetric
 - Triangle inequality

- Many “ad-hoc” metric data sets (not a vector space)
 - But are “close” to low-dimensional Euclidean metrics.

- Many Euclidean data sets with high embedding dimension.
 - But have “intrinsic” low-dimensional structure, e.g. a low-dimensional manifold.

- Goal: Capture their “intrinsic dimension”.
Intrinsic Dimension

- Can we measure the “complexity” of a metric using a notion of “dimension”?
 - Abstract—should depend only on the distances
 - Analogy—should generalize vector spaces (\mathbb{R}^m)

- We borrow a notion from Analysis
 - Show its advantages over previous suggestions
 - And that it controls the complexity of various algorithms!
A Metric Notion of Dimension

- Definition: $B(x,r) = \text{all points of } X \text{ within distance } r \text{ from } x$.

- The doubling dimension of (X,d), denoted $\text{dim}(X)$, is the minimum $k > 0$ s.t. every ball can be covered by 2^k balls of half the radius.

 - Defined by [Gupta-K.-Lee’03], inspired by [Assouad’83, Clarkson’97].
 - Call a metric doubling if $\text{dim}(X) = O(1)$.
 - Captures every norm on \mathbb{U}^k.

- Robust to:
 - taking subsets,
 - union of sets,
 - small distortion in distances, etc.

- Unlike earlier suggestions based on $|B(x,r)|$ [Plaxton-Richa-Rajaraman’97, Karger-Ruhl’02, Faloutsos-Kamel’94, K.-Lee’03, …]

Here $2^k \approx 7$. A metric notion of dimension and its applications to learning
Example: Earthmover Metric

- The earthmover distance between $S, T \subseteq [0,1]^2$ with $|S| = |T|$, is:

$$\text{EMD}(S, T) = \min_{\pi : S \rightarrow T} \left\{ \frac{1}{k} \sum_{s \in S} \|s - \pi(s)\|_2 \right\}$$

where the minimum is over all one-to-one mappings $\pi : S \rightarrow T$.

- Has several uses e.g. in computer vision applications

- Lemma: This earthmover metric for sets of size k has doubling dimension $\lesssim O(k \log k)$.

- Proof sketch:
 - Fix an $r/2$-grid in the plane, and “approximate” a set S by snapping it to grid point
 - The sets S near a fixed T, i.e. $\text{EMD}(S, T) \lesssim r$, can be “approximated” by one of only $k^{O(k)}$ fixed sets
Applications of Doubling Metrics

- **Approximate Nearest Neighbor Search (NNS)** [Clarkson’97, K.-Lee’04,…, Cole-Gottlieb’06, Indyk-Naor’06,…]

- **Dimension reduction** [Bartal-Recht-Sculman’07, Gottlieb-K.’09]

- **Embeddings** [Gupta-K.-Lee’03, K.-Lee-Mendel-Naor’04, Abraham-Bartal-Neiman’08]

- **Networking and distributed systems:**
 - Spanners [Talwar’04,…, Gottlieb-Roditty’08]
 - Compact Routing [Chan-Gupta-Maggs-Zhou’05,…]
 - Network Triangulation [Kleinberg-Slivkins-Wexler’04,…]
 - Distance oracles [HarPeled-Mendel’06]

- **Classification** [Bshouty-Li-Long’09, Gottlieb-Kontorovich-K.’10]
Near Neighbor Search (NNS)

- **Problem statement:**
 - Preprocess n data points in a metric space X, so that
 - Given a query point q, can quickly find the closest point to q among X, i.e. compute $a \in X$ such that $d(q,a) = d(q,X)$.

- **Naive solution:**
 - No preprocessing, query time $O(n)$

- **Ultimate goal (holy grail):**
 - Preprocessing time: about $O(n)$
 - Query time: $O(\log n)$
 - Achievable on the real line
NNS in Doubling Metrics

- **A simple \((1+\varepsilon)\)-NNS scheme** \([K.-Lee’04a]\):
 - Query time: \((1/\varepsilon)^{O(\text{dim}(X))} \cdot \log \Phi\). \([\Phi = d_{\text{max}}/d_{\text{min}} \text{ is spread}]\)
 - Preprocessing: \(n \cdot 2^{O(\text{dim}(X))}\).
 - Insertion / deletion time: \(2^{O(\text{dim}(X))} \cdot \log \Phi \cdot \log \log \Phi\).

- **Outperforms previous schemes** \([Plaxton-Richa-Rajaraman’98, Clarkson’99, Karger-Ruhl’02]\):
 - Simpler, wider applicability, deterministic, bound not needed
 - Nearly matches the Euclidean case \([Arya et al.’94]\)
 - Explains empirical successes—it’s just easy…

- **Subsequent enhancements**:
 - Optimal storage \(O(n)\) \([Beygelzimer-Kakade-Langford]\)
 - Also implemented and obtained very good empirical results
 - No dependence on \(\Phi\) \([K.-Lee’04b, Mendel-HarPeled’05, Cole-Gottlieb’06]\)
 - Faster scheme for doubling Euclidean metrics \([Indyk-Naor]\)
Nets

- **Motivation:** Approximate the metric at one scale \(r > 0 \).
 - Provide a spatial “sample” of the metric space
 - E.g., grids in \(\mathbb{U}^2 \).

- **Definition:** \(Y \) \(\rightarrow \) \(X \) is called an \(r \)-net if it is an \(r \)-separated subset that is maximal, i.e.,
 1. For all \(y_1, y_2 \in Y \), \(d(y_1, y_2) \geq r \) [packing]
 2. For all \(x \in X \setminus Y \), \(d(x, Y) < r \) [covering]
Navigating nets

NNS scheme (**simplest variant**):

- **Preprocessing**
 - Compute a 2^i-net for all i.
 - Add “local links”.

- **Query**
 - Iteratively go to finer nets
 - Navigating towards query point.

From a 2^i-net point to **nearby** 2^{i-1}-net points,
local links $\lesssim 2^\Theta(dim(X))$.

A metric notion of dimension and its applications to learning
The JL Lemma

Theorem [Johnson-Lindenstrauss, 1984]:
For every n-point set $X \subseteq \mathbb{R}^m$ and $0 < \varepsilon < 1$, there is a map $\Psi: X \rightarrow \mathbb{R}^k$, for $k = O(\varepsilon^{-2} \log n)$, that preserves all distances within $1 + \varepsilon$:

$$ ||x-y||_2 < ||\Psi(x)-\Psi(y)||_2 < (1+\varepsilon) ||x-y||_2, \quad ; x, y \in X. $$

- Can be realized by a simple linear transformation
 - A random $k \times d$ matrix works – entries from $\{-1,0,1\}$ [Achlioptas’01] or Gaussian [Gupta-Dasgupta’98, Indyk-Motwani’98]

- Many applications (e.g. computational geometry)

- Can we do better?
A Stronger Version of JL?

Recall [Johnson-Lindenstrauss, 1984]:

Every \(n \)-point set \(X \rightarrow l_2 \) and \(0 < \varepsilon < 1 \), has a linear embedding \(\Psi: X \rightarrow l_2^k \), for \(k = O(\varepsilon^{-2} \log n) \), such that for all \(x, y \in X \),

\[
\|x - y\|_2 < \|\Psi(x) - \Psi(y)\|_2 < (1 + \varepsilon) \|x - y\|_2.
\]

- A matching lower bound of [Alon’03]:
 - \(X = \) uniform metric, then \(\dim(X) = \log n \), \(k = \Omega(\varepsilon^{-2} \log n) \)

- Open: JL-like embedding into dimension \(k = k(\varepsilon, \dim X) \)?
 - Even constant distortion would be interesting [Lang-Plaut’01, Gupta-K.-Lee’03]:
 - Cannot be attained by linear transformations [Indyk-Naor’06]

We present two partial resolutions, using \(\tilde{O}(\dim X^2) \) dimensions:

1. Distortion 1+\(\varepsilon \) for a single scale, i.e. pairs where \(\|x - y\| \geq \delta r, r \).
2. Global embedding of the snowflake metric, \(\|x - y\|^{\frac{1}{2}} \).
2’. Conjecture correct whenever \(\|x - y\|^2 \) is Euclidean (e.g. for every ultrametric).
I. Embedding for a Single Scale

- **Theorem 1 [Gottlieb-K.]:** For every finite subset $X \subseteq l_2$, and all $0 < \delta < 1$, $r > 0$, there is embedding $f: X \rightarrow l_2^k$ for $k = \tilde{O}(\log(1/\delta)(\text{dim } X)^2)$, satisfying
 1. Lipschitz: $||f(x) - f(y)|| \leq ||x - y||$ for all $x, y \in X$
 2. Bi-Lipschitz at scale r: $||f(x) - f(y)|| \geq \Omega(||x - y||)$ whenever $||x - y|| \in [\delta r, r]$
 3. Boundedness: $||f(x)|| \leq r$ for all $x \in X$

- **Compared to open question:**
 - Bi-Lipschitz only at one scale (weaker)
 - But achieves distortion = absolute constant (stronger)

- **Improved version:** $1 + \epsilon$ distortion whenever $||x - y|| \in [\delta \epsilon r, \epsilon r]$

- **Divide and conquer approach:**
 - Net extraction
 - Padded Decomposition
 - Gaussian Transform (kernel)
 - JL (locally)
 - Glue partitions
 - Extension theorem
II. Snowflake Embedding

- **Theorem 2 [Gottlieb-K.]:** For every $0 < \varepsilon < 1$ and finite subset $X \subseteq \mathbb{R}^2$ there is an embedding $F : X \rightarrow \ell_2^k$ of the snowflake metric $||x-y||^{1/2}$ achieving dimension $k = \tilde{O}(\varepsilon^{-4}(\dim X)^2)$ and distortion $1 + \varepsilon$, i.e.

 $$1 \leq \frac{||F(x) - F(y)||}{||x - y||^{1/2}} \leq 1 + \varepsilon, \quad \forall x, y \in X.$$

- **Compared to open question:**
 - We embed the snowflake metric (weaker)
 - But achieve distortion $1 + \varepsilon$ (stronger)

- **We generalize [Kahane’81, Talagrand’92] who embed Wilson’s helix (real line w/distances $|x-y|^{1/2}$)**
Distance-Based Classification

- **How to classify data presented as points in a metric space?**
 - No inner-product structure…

- **Framework for large-margin classification [von Luxburg-Bousquet’04]:**
 - Hypotheses (classifiers) are Lipschitz functions \(f: X \rightarrow \mathbb{U} \).
 - Classification reduces to finding such \(f \) consistent with labeled data (which is a classic problem in Analysis, known as Lipschitz extension)
 - They establish generalization bounds
 - Evaluating the classifier \(f(.) \) is reduced to 1-NNS
 - Exact NNS
 - Assuming zero training error

- **Left open:**
 - What about approximate NNS? Exact is hard…
 - What about training error?
Efficient Classification of Metric Data

- **[Gottlieb-Kontorovich-K.’10]:** Data of low doubling dimensions admits accurate and computationally-efficient classification
 - First relation between classification efficiency and data's dimension
 - Contrast to [Bshouty-Li-Long’09]

I. Choose a classifier quickly (deal w/training error)
- Need to find the errors and optimize bias-variance tradeoff
- Key step: Given target # Lipschitz constant, minimize # of outliers (and find them)

II. Evaluate the classifier using approximate NNS
- For which efficient algorithms are known
- Key idea: approx. NNS is “indetermined” but we only need to evaluate sign(f)
The Bigger Picture

Summary

- Algorithms for general (low-dimensional) metric spaces

Future

- Other contexts:
 - Different/weaker assumptions, e.g. similarity
 - Deal with graphs (social networks? Chemicals?)
- Rigorous analysis of heuristics
 - Explain or predict empirical behavior of algorithms.
- Connections to other fields
 - Databases, networking, machine learning, Fourier analysis, communication complexity, information theory