Towards Semantic Embedding in Visual Vocabulary

Session: Object Recognition II: using Language, Tuesday 15, June 2010

Rongrong Ji1, Hongxun Yao1, Xiaoshuai Sun1, Bineng Zhong1, and Wen Gao1,2

1Visual Intelligence Laboratory, Harbin Institute of Technology
2School of Electronic Engineering and Computer Science, Peking University
Overview

- Problem Statement
- Building patch-labeling correspondence
- Generative semantic embedding
- Experimental comparisons
- Conclusions
Overview

- Problem Statement
- Building patch-labeling correspondence
- Generative semantic embedding
- Experimental comparisons
- Conclusions
• Building visual codebooks
 – Quantization-based approaches
 • K-Means, Vocabulary Tree, Approximate K-Means et al.
 – Feature-indexing-based approaches
 • K-D Tree, R Tree, Ball Tree et al.
• Refining visual codebooks
 – Topic model decompositions
 • pLSA, LDA, GMM et al.
 – Spatial refinement
 • Visual pattern mining, Discriminative visual phrase et al.
• With the prosperity of Web community
• Problems to achieve this goal
 – Supervision @ image level
 – Correlative semantic labels
 – Model generality

A traditional San Francisco street view with car and buildings

Flower

Rose
• Our contribution
 – Publish a ground truth path-labeling set
 http://vilab.hit.edu.cn/~rrji/index_files/SemanticEmbedding.htm
 – A generalized semantic embedding framework
 • Easy to deploy into different codebook models
 – Modeling label correlations
 • Model correlative tagging in semantic embedding
Introduction

- The proposed framework

```
• Preliminary
  - Flickr Photos Clawing
  - Local Feature Extraction

• Correspondence for Embedding
  - Building Patch-Label Correspondence
  - Correspondence Purification based on DDE
  - Semi-Supervised Clustering via Markov Random Field Modeling
  - Building Visual Vocabulary Model

• Semantic Embedding
  - Semantic Embedding as Gibbs Distribution in Hidden Field
  - Modeling WordNet-based Concept Correlations

Supervised visual codebook construction
```
Overview

- Problem Statement
- Building patch-labeling correspondence
- Generative semantic embedding
- Experimental comparisons
- Conclusions
Building Patch-Labeling Correspondence

- Collecting over 60,000 Flickr photos
 - For each photo
 - DoG detection + SIFT
- “Face” labels (for instance)
• Purify the path-labeling correspondences
 – Density-Diversity Estimation (DDE)
 – Formulation
 • For a semantic label s_i, its initial correspondence set is

 \[
 < D_i, s_i > = \{ d_1, d_2, \ldots, d_n \}, s_i >
 \]

 \[
 = \{ le_{d_1 s_i}, le_{d_2 s_i}, \ldots, le_{d_n s_i} \}
 \]

 \[
 D_i = \{ d_1, d_2, \ldots, d_n \}
 \]

 – Patches extracted from images with label s_i

 \[
 le_{ij}
 \]

 – A correspondence from label s_i to local patch d_j
• Density
 – For a given d_l, **Density** Den_{d_l} reveals its representability for s_i:

$$Den_{d_l} = \frac{1}{m} \sum_{j} \exp(\|d_l - a_j\|_{L2})$$

Average neighborhood distance in m neighbors

n_m: number of images in neighborhood

n_i: number of total images with label s_i

• Diversity
 – For a given d_l, **Diversity** Div_{d_l} reveals its unique score for s_i:

$$Div_{d_l} = -\frac{n_m}{n_i} \ln\left(\frac{n_m}{n_i}\right)$$
$D^\text{Purify}_i = \{d_j \mid DDE_{d_j} > T\}$

s.t. $DDE_{d_j} = Den_{d_j} \times Div_{d_j}$

High T: Concerns more on Precision, not Recall
• Case study: “Face” label (before DDE)
• Case study: “Face” label (after DDE)
Overview

- Problem Statement
- Building patch-labeling correspondence
- Generative semantic embedding
- Experimental comparisons
- Conclusions
Generative Hidden Markov Random Field

- A Hidden Field for semantic modeling
- An Observed Field for local patch quantization
• Hidden Field \(S = \{s_i\}_{i=1}^m \)
 – Each \(s_i \) produces correspondence links (le) to a subset of patch in the Observed Field
 – Links \(l_{ij} \) denotes semantic correlations between \(s_i \) and \(s_j \)
- **Observed Field** $D = \{d_i\}_{i=1}^n$
 - Any two nodes follow visual metric (e.g. $L2$)
 - Once there is a link le_{ij} between d_i and s_j, we constrain d_i by s_j from the hidden field
• In the ideal case

 – Each d_i is conditionally independent given S:

 $$P(D \mid S) = \prod_{i \in m} \{P(d_i \mid s_j) \mid P(d_i \mid s_j) \neq 0\}$$

 Feature set D is regarded as (partial) generative from the Hidden Field
– Formulize Clustering procedure

• Assign a unique cluster label c_i to each d_i

• Hence, D is quantized into a codebook $W = \{w_k\}_{k=1}^K$ with corresponding features $V = \{v_k\}_{k=1}^K$

• Cost for codebook candidate C

\[
P(C|D) = \frac{P(C)P(D|C)}{P(D)}
\]
• Semantic Constraint $P(C)$
 – Define a MRF on the Observed Field

 \[P(C) = \frac{1}{\mathcal{H}} \exp(-\mathcal{L}(C)) = \frac{1}{\mathcal{H}} \exp(-\sum_{k=1}^{K} \mathcal{L}_{N_k}(w_k)) \]

 – For a quantizer assignments C, its probability can be expressed as a Gibbs distribution from the Hidden Field as

 \[\forall i \quad P(c_i|C) = P(c_i|\{c_j | le_{jx} \neq 0, le_{iy} \neq 0, x \in \mathcal{N}_y \}) \]
• That is
 – Two data points d_i and d_j in w_k contribute to $\mathcal{L}_{N_k}(w_k)$ if and only if

 \[
P(C) = \frac{1}{\mathcal{H}} \exp \left(- \sum_{k=1}^{K} \mathcal{L}_{N_k}(w_k) \right)
 \]

 \[
 = \frac{1}{\mathcal{H}} \exp \left(- \sum_{k=1}^{K} \sum_{i \in N_k} \sum_{j \in N_k} \left\{ -l_{xy} \mid le_{xi} \neq 0 \land le_{yj} \neq 0 \right\} \right)
 \]
• Visual Constraint $P(D|C)$
 – Whether the codebook C is visually consistent with current data D
 • Visual distortion in quantization

$$
\sum_{i=1}^{n} \{P(d_i, v_k) | c_i = w_k\} \\
\propto \exp \left(- \sum_{i=1}^{n} \{\text{Dis}(d_i, v_k) | c_i = w_k\} \right)
$$
• Overall Cost
 • Finding MAP of $P(C|D)$ can be converted into maximizing its posterior probability

$$P(C|D) \propto P(D|C)P(C) \propto \left(\sum_{i=1}^{n} \{P(d_i, v_k) | c_i = w_k\} \right) \times \left(\frac{1}{\mathcal{H}} \exp \left(\sum_{k=1}^{K} \sum_{i \in \mathcal{N}_k} \sum_{j \in \mathcal{N}_k} \{l_{xy} | le_{xi} \neq 0 \land le_{yj} \neq 0\} \right) \right)$$
Generative Semantic Embedding

• EM solution

 - E step

 $$\text{Obj}(c_i|d_i) = \arg \min_k (-\text{Dis}(d_i, v_k) + \frac{1}{\mathcal{H}'} \sum_{j \in \mathcal{N}_k} \{l_{xy} | l_{e_{xi}} \neq 0 \land l_{e_{yj}} \neq 0\})$$

 - M step

 $$v_k = \frac{\sum_{d_i \in W_k} d_i}{\|W_k\|} \quad s.t. \quad W_k = \{d_i|c_i = w_k\}$$

 Assign local patches to the closest clusters

 Update the visual word center
Algorithm 1: Building Supervised Visual Vocabulary

1. **Input:** Visual data $D = \{d_i\}_{i=1}^n$, Semantic supervision $S = \{s_j\}_{j=1}^m$, Correspondence set $\{LE_1, ..., LE_m\}$, and Semantic correlation l_{ij} for any two s_i and s_j calculated by WordNet::Similarity[27], Maximum iteration N_I.

2. **Pre-computing:** Calculate the nearest neighbors in the Hidden Field using an $o(m^2)$ sequential scanning heap. Initialize a random set of clustering centers $\mathcal{W} = \{w_k\}_{k=1}^K$.

3. **Iterative EM Steps:**
 - **while** $\mathcal{V} = \{v_k\}_{k=1}^K$ still change or the number of iteration is within N_I **do**
 - **E Step:** For each d_i in D, assign $c_i = w_k$ that satisfying the objective function in Equation 13, in which nearest neighbors in the Hidden Field are obtained from pre-computing (Step 2).
 - **M Step:** For each w_k in \mathcal{W}, update its corresponding feature vector v_k based on Equation 14.
 - **end**

4. **Output:** Supervised vocabulary $C = \{c_k\}_{k=1}^K$ with its inverted indexing structure (Indexed after EM).
Generative Semantic Embedding

• Model generation
 – To supervised codebook with label independence assumption
 \[P(C) = \frac{1}{\mathcal{H}} \exp \left(- \sum_{N_i \in N} L_{N_i}(w_i) \right) \]
 \[= \frac{1}{\mathcal{H}} \exp \left(- \sum_{k=1}^{K} \sum_{i \in N_k} \sum_{j \in N_k} \{ -[l_{xy}]_{le_{xi} \neq 0 \land le_{yj} \neq 0} \} \right) \]
 – To unsupervised codebooks
 • Making all \(l=0 \)
Overview

- Problem Statement
- Building patch-labeling correspondence
- Generative semantic embedding
- Experimental comparisons
- Conclusions
Case study of ratios between inter-class distance and intra-class distance with and without semantic embedding in the Flickr dataset.
MAP@1 comparisons between our GSE model to Vocabulary Tree [1] and GNP [34] in Flickr 60,000 database.
Experimental Comparisons

Confusion table comparisons on PASCAL VOC dataset with method in [24].
Overview

- Problem Statement
- Building patch-labeling correspondence
- Generative semantic embedding
- Experimental comparisons
- Conclusions
Conclusion

• Our contribution
 • Propagating Web Labeling from images to local patches to supervise codebook quantization
 • Generalized semantic embedding framework for supervised codebook building
 • Model correlative semantic labels in supervision

• Future works
 • Adapt one supervised codebook for different tasks
 • Move forward supervision into local feature detection and extraction
Thank you!