Grouplet: A Structured Image Representation for Recognizing Human and Object Interactions

Bangpeng Yao and Li Fei-Fei
Computer Science Department, Stanford University

{bangpeng, feifeili}@cs.stanford.edu
Human-Object Interaction

Playing saxophone

Not playing saxophone
Human-Object Interaction

Robots interact with objects
Automatic sports commentary
“Kobe is dunking the ball.”
Medical care
Background: Human-Object Interaction

- Schneiderman & Kanade, 2000
- Viola & Jones, 2001
- Huang et al, 2007
- Papageorgiou & Poggio, 2000
- Wu & Nevatia, 2005
- Dalal & Triggs, 2005
- Mikolajczyk et al, 2005
- Leibe et al, 2005
- Bourdev & Malik, 2009
- Felzenszwalb & Huttenlocher, 2005
- Ren et al, 2005
- Ramanan, 2006
- Ferrari et al, 2008
- Yang & Mori, 2008
- Andriluka et al, 2009
- Eichner & Ferrari, 2009

To be done

- Lowe, 1999
- Belongie et al, 2002
- Fergus et al, 2003
- Fei-Fei et al, 2004
- Berg & Malik, 2005
- Felzenszwalb et al, 2005
- Grauman & Darrell, 2005
- Sivic et al, 2005
- Lazebnik et al, 2006
- Zhang et al, 2006
- Savarese et al, 2007
- Lampert et al, 2008
- Desai et al, 2009
- Gehler & Nowozin, 2009

context

- Murphy et al, 2003
- Hoiem et al, 2006
- Shotton et al, 2006

- Rabinovich et al, 2007
- Heitz & Koller, 2008
- Divvala et al, 2009

- Gupta et al, 2009
- Yao & Fei-Fei, 2010a
- Yao & Fei-Fei, 2010b
Background: Human-Object Interaction

• Schneiderman & Kanade, 2000
• Viola & Jones, 2001
• Huang et al, 2007
• Papageorgiou & Poggio, 2000
• Wu & Nevatia, 2005
• Dalal & Triggs, 2005
• Mikolajczyk et al, 2005
• Leibe et al, 2005
• Bourdev & Malik, 2009
• Felzenszwalb & Huttenlocher, 2005
• Ren et al, 2005
• Ramanan, 2006
• Ferrari et al, 2008
• Yang & Mori, 2008
• Andriluka et al, 2009
• Eichner & Ferrari, 2009

• Lowe, 1999
• Belongie et al, 2002
• Fergus et al, 2003
• Fei-Fei et al, 2004
• Berg & Malik, 2005
• Felzenszwalb et al, 2005
• Grauman & Darrell, 2005
• Sivic et al, 2005
• Lazebnik et al, 2006
• Zhang et al, 2006
• Savarese et al, 2007
• Lampert et al, 2008
• Desai et al, 2009
• Gehler & Nowozin, 2009

• Lowe, 1999
• Belongie et al, 2002
• Fergus et al, 2003
• Fei-Fei et al, 2004
• Berg & Malik, 2005
• Felzenszwalb et al, 2005
• Grauman & Darrell, 2005
• Sivic et al, 2005
• Lazebnik et al, 2006
• Zhang et al, 2006
• Savarese et al, 2007
• Lampert et al, 2008
• Desai et al, 2009
• Gehler & Nowozin, 2009

• Gupta et al, 2009
• Yao & Fei-Fei, 2010a
• Yao & Fei-Fei, 2010b

context

• Murphy et al, 2003
• Hoiem et al, 2006
• Shotton et al, 2006

• Rabinovich et al, 2007
• Heitz & Koller, 2008
• Divvala et al, 2009

To be done

• Gupta et al, 2009
• Yao & Fei-Fei, 2010a
• Yao & Fei-Fei, 2010b

vs
Outline

• Intuition of Grouplet Representation
• Grouplet Feature Representation
• Using Grouplet for Recognition
• Dataset & Experiments
• Conclusion
Outline

• Intuition of Grouplet Representation
• Grouplet Feature Representation
• Using Grouplet for Recognition
• Dataset & Experiments
• Conclusion
Recognizing Human-Object Interaction is Challenging

Reference image: playing saxophone

Different pose (or viewpoint)

Different lighting

Different background

Different instrument, similar pose

Same object (saxophone), different interactions
Grouplet: our intuition

Bag-of-words Spatial pyramid Part-based Grouplet
Representation:

- Thomas & Malik, 2001
- Csurka et al, 2004
- Fei-Fei & Perona, 2005
- Sivic et al, 2005
- Weber et al, 2000
- Fergus et al, 2003
- Leibe et al, 2004
- Lazebnik et al, 2005
- Felzenszwalb et al, 2005
- Bourdev & Malik, 2009
Grouplet: our intuition

Grouplet Representation:

- Part-based configuration
- Co-occurrence
- Discriminative
- Dense

Capture the subtle difference in human-object interactions.
Outline

• Intuition of Grouplet Representation
• Grouplet Feature Representation
• Using Grouplet for Recognition
• Dataset & Experiments
• Conclusion
Grouplet representation (e.g. 2-Grouplet)

Notations

- I: Image.
- P: Reference point in the image.
- Λ: Grouplet.
- λ_i: Feature unit.
 - A_i: Visual codeword;
 - x_i: Image location;
 - σ_i: Variance of spatial distribution.
Grouplet representation (e.g. 2-Grouplet)

Notations

- \(I \): Image.
- \(P \): Reference point in the image.
- \(\Lambda \): Grouplet.
- \(\lambda_i \): Feature unit.
 - \(A_i \): Visual codeword;
 - \(x_i \): Image location;
 - \(\sigma_i \): Variance of spatial distribution.
- \(\nu(\Lambda, I) \): Matching score of \(\Lambda \) and \(I \).
- \(\nu(\lambda_i, I) \): Matching score of \(\lambda_i \) and \(I \).

Visual codewords

Gaussian distribution

\[\nu(\Lambda, I) \]
Matching score between \(\Lambda \) and \(I \)
Grouplet representation (e.g. 2-Grouplet)

I: Image.
P: Reference point in the image.
Λ: Grouplet.
λ_i: Feature unit.
- A_i: Visual codeword;
- x_i: Image location;
- σ_i: Variance of spatial distribution.

$v(\Lambda, I)$: Matching score of Λ and I.
$v(\lambda_i, I)$: Matching score of λ_i and I.

For an image patch:
- a': Its visual appearance;
- x': Its image location.
$\Omega(x)$: Image neighborhood of x.

$$v(\Lambda, I) = \min_i \left\{ v(\lambda_i, I) \right\} = \min_i \left\{ \sum_{x' \in \Omega(x_i)} \left[p(A_i \mid a') \cdot N(x' \mid x_i, \sigma_i) \right] \right\}$$

Matching score between Λ and I
Matching score between λ_i and I
Codeword assignment score
Gaussian density value
Grouplet representation (e.g. 2-Grouplet)

Notations

- I: Image.
- P: Reference point in the image.
- Λ: Grouplet.
- λ_i: Feature unit.
 - A_i: Visual codeword;
 - x_i: Image location;
 - σ_i: Variance of spatial distribution.
- $\nu(\Lambda, I)$: Matching score of Λ and I.
- $\nu(\lambda_i, I)$: Matching score of λ_i and I.
- For an image patch:
 - a': Its visual appearance;
 - x': Its image location.
- $\Omega(x)$: Image neighborhood of x.
- Δ: A small shift of the location.

Matching score between Λ and I

$\nu(\Lambda, I) = \min_i \left\{ \nu(\lambda_i, I) \right\}$

Matching score between λ_i and I

$\nu(\lambda_i, I) = \min_j \left\{ \max_{a'} \left\{ \sum_{x' \in \Omega(x')} \left[p(\sum_{i} a' \cdot a_i | \lambda_i) \cdot p(N(x' | \lambda_i, \sigma_i)) \right] \right\} \right\}$
Grouplet representation

- Part-based configuration
- Co-occurrence
- Discriminative

Playing saxophone

Other interactions

(matching score: 0.6 matching score: 0.4 matching score: 0.0 matching score: 0.1)
Grouplet representation

- Part-based configuration
- Co-occurrence
- Discriminative
- Dense

All possible Codewords

Densely sample image locations

Many possible spatial distributions

All possible combinations of feature units

1-grouplet 2-grouplet 3-grouplet
Outline

• Intuition of Grouplet Representation
• Grouplet Feature Representation
• Using Grouplet for Recognition
• Dataset & Experiments
• Conclusion
A “Space” of Grouplets
A “Space” of Grouplets

Playing violin
Other interactions
A “Space” of Grouplets

Playing saxophone Other interactions

Playing violin Other interactions
A “Space” of Grouplets

Playing saxophone Other interactions

Playing violin Other interactions

On background

Shared by different interactions
We only need discriminative Grouplets

Number of feature units: N.
N is large (192200)

Number of Grouplets: 2^N
very large space
Obtaining discriminative grouplets for a class

Obtain grouplets with large \(\nu(\Lambda, I) \) on the class.

Remove grouplets with large \(\nu(\Lambda, I) \) from other classes.

Apriori Mining

Selected 1-grouplets

Candidate 2-grouplets

Mine 1000~2000 grouplets, only need to evaluate \((2~100) \times N\) grouplets

Number of feature units: \(N \).

\(N \) is large (192200)

Number of Grouplets: \(2^N \)

very large space

[Agrawal & Srikant, 1994]
Using Grouplets for Classification

Discriminative grouplets $[\Lambda_1, \ldots, \Lambda_N]$ → I → $[\nu(\Lambda_1, I), \ldots, \nu(\Lambda_N, I)]$ → SVM
Outline

• Intuition of Grouplet Representation
• Grouplet Feature Representation
• Using Grouplet for Recognition
• Dataset & Experiments
• Conclusion
People-Playing-Musical-Instruments (PPMI) Dataset

http://vision.stanford.edu/resources_links.html

PPMI+

Image: (172) (191) (177) (179) (200) (198) (185)

PPMI-

Image: (164) (148) (133) (149) (188) (169) (167)

Original image

Normalized image
(200 images each interaction)
Recognition Tasks on People-Playing-Musical-Instruments (PPMI) Dataset

Classification

- Playing different instruments
 - Playing French horn
 - Playing violin
 vs.
 - Not playing violin

- Playing vs. Not playing
 - Playing violin
 vs.
 - Not playing violin

Detection

For each interaction, 100 training and 100 testing images.
Classification: Playing Different Instruments

- 7-class classification on PPMI+ images

![Bar chart showing classification accuracy for various methods]

![Graph showing the number of mined grouplets vs grouplet size]

SPM: [Lazebnik et al, 2006]
DPM: [Felzenszwalb et al, 2008]
Constellation: [Fergus et al, 2003]
[Niebles & Fei-Fei, 2007]
Classifying Playing vs. Not playing

- Seven 2-class classification problem; PPMI+ vs. PPMI- for each instrument.
Classifying Playing vs. Not playing

- Seven 2-class classification problem; PPMI+ vs. PPMI- for each instrument.

![Graph showing classification accuracies for different instruments.

Axes:
- Y-axis: Accuracy
- X-axis: Instruments (Bassoon, Erhu, Flute, French horn, Saxophone, Violin)

Legend:
- BoW
- DPM
- SPM
- Grouplet+SVM

Observations:
- Flute and Saxophone have the highest accuracy for Grouplet+SVM.
- French horn shows a notable peak for DPM.
- Violin has a consistent performance across all methods.

Average PPMI+ images:
- Visual representation of average PPMI+ images for each instrument.

Average PPMI- images:
- Visual representation of average PPMI- images for each instrument.
Detecting people playing musical instruments

Procedure:
- Face detection with a low threshold;
- Crop and normalize image regions;
- 8-class classification
 - 7 classes of playing instruments;
 - Another class of not playing any instrument.

Playing saxophone No playing No playing
Detecting people playing musical instruments

Area under the precision-recall curve:

- Out method: 45.7%;
- Spatial pyramid: 37.3%.
Detecting people playing musical instruments

Area under the precision-recall curve:
 - Out method: 45.7%;
 - Spatial pyramid: 37.3%.
Examples of Mined Grouplets

Playing bassoon:

Playing saxophone:

Playing violin:

Playing guitar:
Conclusion

• Holistic image-based classification

Vs.

• Detailed understanding and reasoning

Pose estimation & object detection

Thanks to
Juan Carlos Niebles, Jia Deng, Jia Li, Hao Su, Silvio Savarese, and anonymous reviewers.

And You