Aggregating local descriptors into a compact representation

Hervé Jégou¹, Matthijs Douze², Cordelia Schmid² and Patrick Pérez³

¹: INRIA Rennes, TEXMEX team, France
²: INRIA Grenoble, LEAR team, France
³: Technicolor, France
Problem setup: Image indexing

- Retrieval of images representing the same object/scene:
 - different viewpoints, backgrounds, …
 - copyright attacks: cropping, editing, …
 - short response time
 - billions of images

queries

relevant answers
Related work on large scale image search

- Most systems build upon the BoF framework [Sivic & Zisserman 03]
 - Large (hierarchical) vocabularies [Nister Stewenius 06]
 - Improved descriptor representation [Jégou et al 08, Philbin et al 08]
 - Geometry used in index [Jégou et al 08, Perdoc’h et al 09]
 - Query expansion [Chum et al 07]
 - …
→ memory tractable for a few million images only

- Efficiency improved by
 - Min-hash and Geometrical min-hash [Chum et al. 07-09]
 - compressing the BoF representation [Jégou et al. 09]

But still hundreds of bytes are required to obtain a “reasonable quality”

- Alternative: GIST descriptors with Spectral Hashing or similar techniques
→ very limited invariance to scale/rotation/crop
Objective and proposed approach

• **Aim:** optimizing the trade-off between
 - search quality
 - search speed
 - memory usage

• **Approach:** joint optimization of three stages
 - local descriptor aggregation
 - dimension reduction
 - indexing algorithm

```
extract SIFT → [5 34 14] → aggregate descriptors → [−0.234 0.452 0.134 0.001] → dimension reduction → [0.155 0.230 ... 0.435] → vector encoding /indexing → code
```

n SIFTS (128 dim) → D → D'
Aggregation of local descriptors

- Problem: represent an image by a single fixed-size vector:

 set of n local descriptors \rightarrow 1 vector

- Most popular idea: BoF representation [Sivic & Zisserman 03]
 - sparse vector
 - highly dimensional
 \rightarrow strong dimensionality reduction introduces loss

- Alternative: Fisher Kernels [Perronnin et al 07]
 - non sparse vector
 - excellent results with a small vector dimensionality
 \rightarrow our method in the spirit of this representation
VLAD: Vector of Locally Aggregated Descriptors

- **Learning:** \(k \)-means
 - output: \(k \) centroids: \(c_1, \ldots, c_i, \ldots c_k \)

- **VLAD computation:**
 1. \(c(x) = \arg \min_{c_i} ||c_i - x||^2 \)
 2. \(v_i = \sum_{x : c(x) = c_i} (x - c_i) \)
 3. \(v = [v_1, \ldots, v_i, \ldots, v_k] \), \(v_i \in \mathbb{R}^{128} \)

\(\Rightarrow \) dimension \(D = k \times 128 \)

- L2-normalized
- Typical parameter: \(k=64 \) (\(D=8192 \))

\[\text{INRIA}\]
VLADs for corresponding images

SIFT-like representation per centroid (+ components: blue, - components: red)

- good coincidence of energy & orientations
VLAD performance and dimensionality reduction

- We compare VLAD descriptors with BoF: INRIA Holidays Dataset (mAP, %)
- Dimension is reduced to from D to D' dimensions with PCA

<table>
<thead>
<tr>
<th>Aggregator</th>
<th>k</th>
<th>D</th>
<th>D'=D (no reduction)</th>
<th>D'=128</th>
<th>D'=64</th>
</tr>
</thead>
<tbody>
<tr>
<td>BoF</td>
<td>1,000</td>
<td>1,000</td>
<td>41.4</td>
<td>44.4</td>
<td>43.4</td>
</tr>
<tr>
<td>BoF</td>
<td>20,000</td>
<td>20,000</td>
<td>44.6</td>
<td>45.2</td>
<td>44.5</td>
</tr>
<tr>
<td>BoF</td>
<td>200,000</td>
<td>200,000</td>
<td>54.9</td>
<td>43.2</td>
<td>41.6</td>
</tr>
<tr>
<td>VLAD</td>
<td>16</td>
<td>2,048</td>
<td>49.6</td>
<td>49.5</td>
<td>49.4</td>
</tr>
<tr>
<td>VLAD</td>
<td>64</td>
<td>8,192</td>
<td>52.6</td>
<td>51.0</td>
<td>47.7</td>
</tr>
<tr>
<td>VLAD</td>
<td>256</td>
<td>32,768</td>
<td>57.5</td>
<td>50.8</td>
<td>47.6</td>
</tr>
</tbody>
</table>

Observations:
- VLAD better than BoF for a given descriptor size
 → comparable to Fisher kernels for these operating points
- Choose a small D if output dimension D' is small
Indexing algorithm: searching with quantization [Jegou et al. 10]

- Search/Indexing = distance approximation problem
- The distance between a query vector x and a database vector y is estimated by

$$d(x, y) \approx d(x, q(y))$$

where $q(.)$ is a quantizer

→ vector-to-code distance

- The choice of the quantizer is critical
 - needs many centroids
 - regular k-means and approximate k-means can not be used
 → we typically want $k=2^{64}$ for 64-bit codes
Product quantization for nearest neighbor search

- Vector split into m subvectors: $y \rightarrow [y_1 | \ldots | y_m]$

- Subvectors are quantized separately by quantizers

$$q(y) = [q_1(y_1) | \ldots | q_m(y_m)]$$

where each q_i is learned by k-means with a limited number of centroids

- Example: $y = 128$-dim vector split in 8 subvectors of dimension 16

⇒ 64-bit quantization index
Product quantizer: asymmetric distance computation (ADC)

- Compute the square distance approximation in the compressed domain

\[d(x, y)^2 \approx \sum_{i=1}^{m} d(x_i, q_i(y_i))^2 \]

- To compute distance between query \(x \) and many codes
 - compute \(d(x_i, c_{i,j})^2 \) for each subvector \(x_i \) and all possible centroids
 - stored in look-up tables
 - for each database code: sum the elementary square distances

- Each 8x8=64-bits code requires only \(m=8 \) additions per distance!

- IVFADC: combination with an inverted file to avoid exhaustive search
Optimizing the dimension reduction and quantization together

- VLAD vectors suffer two approximations
 - mean square error from PCA projection: $e_p(D')$
 - mean square error from quantization: $e_q(D')$

- Given k and bytes/image, choose D' minimizing their sum

<table>
<thead>
<tr>
<th>Ex, $k=16$:</th>
<th>D'</th>
<th>$e_p(D')$</th>
<th>$e_q(D')$</th>
<th>$e_p(D')+e_q(D')$</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>0.0632</td>
<td>0.0164</td>
<td>0.0796</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>0.0508</td>
<td>0.0248</td>
<td>0.0757</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>0.0434</td>
<td>0.0321</td>
<td>0.0755</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>0.0386</td>
<td>0.0458</td>
<td>0.0844</td>
<td></td>
</tr>
</tbody>
</table>
Results on standard datasets

- **Datasets**
 - University of Kentucky benchmark score: nb relevant images, max: 4
 - INRIA Holidays dataset score: mAP (%)

<table>
<thead>
<tr>
<th>Method</th>
<th>bytes</th>
<th>UKB</th>
<th>Holidays</th>
</tr>
</thead>
<tbody>
<tr>
<td>BoF, k=20,000</td>
<td>10K</td>
<td>2.92</td>
<td>44.6</td>
</tr>
<tr>
<td>BoF, k=200,000</td>
<td>12K</td>
<td>3.06</td>
<td>54.9</td>
</tr>
<tr>
<td>miniBOF</td>
<td>20</td>
<td>2.07</td>
<td>25.5</td>
</tr>
<tr>
<td>miniBOF</td>
<td>160</td>
<td>2.72</td>
<td>40.3</td>
</tr>
<tr>
<td>VLAD k=16, ADC</td>
<td>16</td>
<td>2.88</td>
<td>46.0</td>
</tr>
<tr>
<td>VLAD k=64, ADC</td>
<td>40</td>
<td>3.10</td>
<td>49.5</td>
</tr>
</tbody>
</table>

miniBOF: “Packing Bag-of-Features”, ICCV’09
Large scale experiments (10 million images)

Database size: Holidays+images from Flickr

- BOF D=200k
- VLAD k=64
- VLAD k=64, D'=96
- VLAD k=64, ADC 16 bytes
- VLAD+Spectral Hashing, 16 bytes

Timings:
- ADC: 0.286s
- IVFADC: 0.014s
- SH ≈ 0.267s
Conclusion

- Competitive search accuracy with a few dozen bytes per indexed image

- Tested on up to 220 million video frames
 - extrapolation for 1 billion images: 20GB RAM, query < 1s on 8 cores

- Matlab package available, includes:
 - VLAD
 - Indexing algorithm (ADC/IVFADC)
 - extracted descriptors

- Improved Fisher kernels by Perronnin et al., CVPR’2010

- 10 million images indexed on my laptop: