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The design of feature spaces for local image descriptors ?
is an important research subject in computer vision due to
its applicability in several problems, such as visual class A mmr/ EEERENTIAL
cation and image matching. In order to be useful, these de- i MNTORIYG PRoMEYS VAT

scriptors have to present a good trade off between discrimi- (@) (b)
nating power and robustness to typical image deformations. SET OF IMAGE MATCHING PROBLEMS

The feature spaces of the most useful local descriptors have s P O o
been manually designed based on the goal above, but this FSO

design often limits the use of these descriptors for some spe 15y O

cisc matching and visual classiecation problems. Alterna- @)

tively, there has been a growing interest in producing fea-

ture spaces by an automatic combination of manually de- ©

signed feature spaces, or by an automatic selection of fea-_ , ,

ture spaces and spatial pooling methods, or by the use offigure 1. Set of image matching problems and the subsgt bf pro
distance metric learning methods. While most of these ap-ﬁ?iéﬂ‘(ﬁﬁhbg :aggi té/pr)ﬁa?(f:rf“enaturfotggr:]ift();n;lj(ebt)s.etlno;: lt%te])zrg
proaches are usually applied to speciec matching or classi- P gp 9

. bl h I h . inal set) and search for the best descriptors (or a combimati
scation problems, where test classes are the same as traiN-yegcriptors) for the task. Figure (c) displays the comixmaof

ing classes, a few works aim at the general feature trans- feature spaces proposed in this paper, where the unionsespise
form problem where the training classes are different from the whole set of matching problems that can be solved.

the test classes. The hope in the latter works is the auto-
matic design of a universal feature space for local descrip-
tor matching, which is the topic of our work. In this paper, which generates a feature transform. This feature tramsfor
we propose a new incremental method for learning auto- can be mathematically] 1] or empirically [2, 14] shown
matically feature spaces for local descriptors. The method to be robust to certain image deformations and to achieve
is based on an ensemble of non-linear feature extractorsa good trade-off between discriminating power and robust-
trained in relatively small and random classiecation prob- ness. There are two distinct ways to understand the problem
lems with supervised distance metric learning techniques.of designing feature transforms to be used by local image
Results on two widely used public databases show that ourdescriptors methods. The rst approach is to come up with
technique produces competitive results in the <eld. descriptors that show robustness to certain image deforma-
1. Introduction tions and present a reasonable discriminating power, and
then nd the matching problems that can be successfully
Local image descriptors have received an enormoussolved with the use of such descriptofs [14, 17]. The
attention ever since the seminal works of Schmid and second way is to start with a matching problem and search
Mohr [17] and Lowe [L4]. Essentially, the design of lo- for feature transforms that can handle the deformations pre
cal image descriptors is based on image features extractedented by the speci ¢ problem while producing descriptors
from compact image regions (covering a small percentagethat are discriminating enouga(.
of the image area) using certain types of spatial pooling  Figure 1-(a) shows a Venn diagram representing the
methods €.g, weighted averaging, histogrammingtc), whole set of image matching problems (rectangle) and the

- . ted by the FCT (ISRAST plurianual fagli subset (circle) of problems solved by the feature trans-
IS WOrk was supporte y the plurianual lﬂlgﬂl H H H i
through the PIDDAC Program funds and Project PRINTART (P TEEA- forms SIFT [L4], shape context]], and differential invari

CRO/098822/2008). This work was partially funded by EU Beoj ~ @nts [L7]. This diagram means that each feature presents
IMASEG3D (PIIF-GA-2009-236173). a good trade off between discriminating power and ro-




bustness for all problems located in its respective subsetter feature spaces for classifying local descriptors. Aapt
There have been reports describing the types of matchingmportant reference is the work by Chopgtal. [6], which
problems that can be handled by certain image descriptorsruns a learning procedure of a feature transform using only
For instance, Mikolajczyk15] noticed that shape context a subset of the test classes for a face veri cation problém. |
presents high performance except for textured scemngs ( remains to be investigated how this method would perform
tree bark, brick wall) and when edges are not reliable. Also, under the same experimental conditions suggested by Hua
Ke [17] presented PCA-SIFT as an alternative to SIFT for et al [11], which is the main benchmark used in our paper.
matching problems containing substantial image deforma- In this work, we introduce a new method to solve the
tion (geometric transformation and brightness variafijpns problem of designing a feature transform that can be used
which also indicates that SIFT-based descriptors are lesdy a large number of unforeseen matching problems. We
suitable when large image deformations are present in thecall it the Universal Feature Transform (UFT). The ap-
problem. Although a common goal of the authors of new proach is de ned as an incremental method for automati-
types of local descriptors is to demonstrate their appiicab cally learning feature spaces for local descriptors based o
ity in several matching problems, it is inevitable that each an ensemble of feature extractors. Each feature extractor i
one of those descriptors can only be applied to a subset otrained in relatively small and random classi cation prob-
the matching problems. Therefore it is unlikely that any lems using supervised non-linear distance metric learning
of the current local descriptors will be useful for all types techniques. By random, we mean that we train each feature
of matching problems. We call the feature transform that space with a set of training classes selected randomly from
produces local descriptors which are useful to solve a largea pool of training classes. The aggregation of the feature
number of unanticipated matching problems, the universalspaces is based on a simple distance sum scheme. There-
feature transform. fore, given a new matching problem, the distance between
In order to increase the set of matching problems solvedtwo descriptors is computed by the sum of the distances in
by one type of descriptor, a quite simple solution is to form all automatically learned feature spaces. Higc) shows
a new descriptor based on the combination of different de-the idea through the combination of several feature spaces
scriptors €.g combine SIFT with shape context},[16], (FS1 to FSN) trained with the method proposed in this pa-
where the hope is that the nal subset of problems coveredper, where the union of the FSi subsets represents the subset
by the new descriptor will be represented by the union of of matching problems solved by our approach. Experiments
their subsets, but unfortunately there is no guarantee thadisplay simple examples that clarify the functionality loét
this is the case. The problem of combining local descriptor method, and then we show results in the database of local
types has been elegantly posed as an optimization problenglescriptors provided by Winder and Brow#’], where we
by Varma and Ray/(], where a combination of several de- follow a training approach speci ¢ to our method, but use
scriptors is found in order to maximize the margin among the same test conditions. Our results are comparable to the
descriptors produced by different local image classes for abest results shown by the same grouf][ but note that
speci ¢ matching problem (Figl-(b)). Even thoughthe lat-  our method uses only the original gray values of the input
ter solution is interesting, small changes to the subséh¢f image patch instead of pre-determined features and spatial
matching problem) require a new training process, which pooling schemes to train the feature transformation, which
reduces the interest in the method for the general problemmeans that the run-time complexity can be smaller with a
of universal feature transform unless it is possibleto mdd  clever implementation based on parallel algorithms. More-
scriptors covering the whole set of matching problems, but over, the fact that we do not use pre-determined features has
it remains to be seen whether this is a tractable optimimatio the potential to increase the subset of matching problems
problem. covered by our method. Using the feature space trained in
The main inspiration for this work is the paper by Heta the database above, we show that the matching results of

al. [11], where the authors propose a universal feature trans-our method in the problems developed by MikolajczyK][

form through an automatic feature selection process, whichare better than for current state-of-the-art local desorip
determines the type of feature to use and the spatial poolingy The Universal Feature Transform

method. Our main criticism is that this is still constrained

to form one feature space, resulting in the same limitations  The proposed universal feature transform (UFT) is an
mentioned before, but note that the set of problems coveredncremental learning method that can adapt itself to new
by such feature space may be larger than any of the existingnatching problems, but that does not worsen its perfor-
spaces. Also, the authors resort to the use of linear distanc mance in problems that it already shows good performance,
metric learning techniques, which we believe to be in the as new learning rounds are processed. We assume the exis-
right direction except for the fact that they are linear, re- tence of a large pool of training classes containing labeled
sulting in feature spaces with stable classi ers (the type o local descriptors, where each class is produced with im-
classi er used is speci ed later) with high bias and low vari age regions taken from the same 3-D location in a scene
ance, and consequently not useful for producing an ensem<{but from different viewpoints and viewing conditions) and
ble of classi ers B]. Implicitly, Huaet al. [11] acknowledge  alignhed to a canonical image space (with similar orienta-
the limitation of the linear transform by rst applyinga pre tion, scale and translation parameters). In order to assess
determined non-linear transformation, which results it be quantitatively the accuracy of the method, we assume the



existence of a labeled test set built in the same way aswherel denotes the identity matrix. Solving the dual &f,(
the training set, but note that the intersection between thewe arrive at the following generalized Eigenvalue problem:
training and test sets is empty. The universal feature space
presented here is an ensemble of feature spaces produced (5)
by non-linear supervised distance metric learning methods

sOT = s,

trained over random training sets of relatively small size.
2.1. Supervised Non-linear Distance Metric Learn-
ing
Our work is rooted in the supervised distance met-
ric learning problem, which automatically designs feature

spaces that bring closer together points belonging to the.
same class and that push farther apart points from differ-
ent classes. Hence, this new distance metric has the po

tential to improve the accuracy of similarity-based classi
ers [6, 9, 21], which is usually the type of classi er used
in local descriptor matching methods. More speci cally,

our classi cation scheme is based on the threshold match-

ing [15], where two descriptors (or two points) are matched

if their distance in the transformed feature space is below a

threshold. Following the notation used by Weinberger and
Saul 1], let us rst consider how to solve the linear dis-
tance metric learnings] 10].

Assume that we havbl image patchex 2 <" and
respective labely 2 f 1;:::;Cg forming the setR
f(Xi;Vi)di=1:Nn - A linear transform is represented by a
matrix T 2 <™ ™, wherem  n such thatc = T~ x,

x 2 <™ andT > means the transpose of matfix The dis-

where the eigenvectors associated withrthiargest eigen-
values will form the linear transforim.

The kernelization of the method, which turns it into a
non-linear feature transform, is important since, inueity,
linear feature transforms are unlikely to handle the wide
range of image deformations that typically appear in match-
ing problems, and are also unlikely to increase the discrim-
inating power of the original feature space. Also, even
though we are dealing with feature transforms, it is impor-
tant to recall Breiman’s argument about ensemble classi-
ers. Breiman [3] argued that ensemble classi ers are effec-
tive only with the combination of unstable classi ers (low
bias and high variance), which is likely to reduce the vari-
ance of the nal classi er (and keep the low bias). Below,
we show that similarity-based classi ers applied in non-
linearly feature transformed spaces produce unstablésesu
with low bias and high variance. Hence, using a similar
reasoning introduced by Breiman, we propose an ensemble
feature transform aggregating non-linear feature transfo
in order to keep the low bias and reduce the variance as
more feature transforms are added to the ensemble.

The kernelization of the approach, [Ld] is achieved by

rst observing thatS™) andS(® in (3) can be written as

tance between two points in the transformed space is therfollows:

denoted as:
Dwm (Xi;Xj) Xj); (2)

whereM = TT >. The convex optimization problem to
learn the linear distance metric can be formulated as fol-
lows:

=(xi xj)”M(x

minimizey

P p—
pi Yi Dwm(Xi;xj)
subject to

i (1 Yi)Dwm(Xiix;)
Mo

1 (2)

where the elemer(t;j ) of matrixY is denoted a¥ j =1

if yi = yj, andYj = 0 otherwise. In order to adapt this
problem to a non-linear transformation, we rst reformelat
the problem2) as follows |, 19]:

T saig max & TUSWT - TUSOT
<m n
3)
where
W= 1P WM v w1
“p i N i X0 x))7 s
g(b) = % i Wi xi X)) x5)7;

withW ™) =Y andw ® =1 Y with Y de nedin (2)
(note that problems2j and @) are related, but not equiva-
lent). Alternatively, this problem can be formulated as fol
lows:

minimizer 17> sOT

subjectto 3T~ SMT = I; )

L P P P .
st =", ]-Wi(j') XiX> i Wi(j')xixj?,or
SO = XL OX>:

. P . 6)
whereL®) = DO WO with D\ = j W {? being a

diagonal matrix, an&k 2 <" N is a matrix containing all
the training points. Another observation is that T
X XU KU , whereU 2 <N ™ and with the ele-
ment(i;j ) of matrixk 2 <N N denoted a&j = X} X;.
Therefore, the generalized eigenvalue problensjrcéan be
re-written as follows:

KL ®KU = ~KL "WKU (7)

by taking the equalit) > T = KU described above, and
multiplying by X> on both sides. Thereforéxigi=1 ::n
appear in terms of their inner product, and the non-linear
transformation can be obtained using Keenel trick[19],
with, for example, the following kernel:

Ki =h (xi); (x;)i =exp i);

(8)
where (:) represents the non-linear transformation to a re-
producing kernel Hilbert spacd [1€], h;:i denotes the
inner product inH, and > 0. Finally, the transformed
feature vector ok is given by [L8]:

(x) = %07 [K (xa;x); K ()] 0 (9)



produce the feature transforms for one test set (also with
100 points per class) using the same classes C1, C2 and C3.
The ROC is built by varying the distance threshold in the
transformed space and calculating the true and false positi
SR rates. Given that we have 10 different feature transforms,
- tinearfeaure anslom we show the mean and standard deviation for the 10 ROC
curves for each type of transformation. Notice how the ac-
curacy for the non-linear transform is much bigger than that
for the linear transformife., smaller bias), but the precision

is signi cantly smaller {.e., bigger variance), indicating the
instability mentioned before (this probably happens due to
over- tting of the training data).

2.2. Combining the Non-linear Feature Transforms

L ol ‘ The distance between two descriptagsandx; in the
T transformed space is computed through the following ag-
Figure 2. Distance metric learning in a 2-D data with thressés. gregation strategy:

The top-left graph represents the distributions of clagskesC2 X

and C3 (contours) and several points in the original spaealgv D(x:'X:) = Kk Xi x: K2 10
spread in a grid. The top-right graph displays the mean aat st (xi5;) Oa) kg ke (10)
dard deviation of ROC curves for the similarity-based dlass
using the learned non-linea®)(and linear §) feature transforms. N .
The bottom-left graph shows the classes transformed usiag t where  (©) is the transformation computed from tHe"

new space produced by the non-linear distance metric kegrni  training set as described iB)(

K

and the transformed points from grid on the top-left graphe T Empirically, we observe that the following conditions are
bottom-right graph shows the same results for the transfoon necessary for our method to work: 1) the original feature
duced with linear distance metric learning. values of the training points have to be in the same range

as the feature values of the test points of future matching
problems; and 2) the ratio of within and between training
class variances has to be similar to the ratio of within and
) ) o ) between test class variances in the original feature space.
~ Fig. 2 displays the application of the supervised non- |ntuitively, condition (1) increases the probability tha-
linear distance metric learning explained above for a three scriptors of future matching problems have feature values
class problem using 2-D data. Each training class (C1, different from zero in the transformed feature space. The
C2, and C3 in the gure) is represented by a Gaussiansecond condition decreases the likelihood that points from
distribution of identity covariance and respective means the same test class are split between two training classes.
1=1[9;12} 2 =[12;7]; 53=[6;7] Thetrainingis pro-  Condition (2) also decreases the likelihood that points be-
cessed by sampling randomly 100 points from each classjonging to different test classes are positively classitsd
and running the non-linea®) and linear ) feature trans-  the same training class.
form learning approaches described above. This gure also | order to explain the intuition of the functionality of

shows how each point in the original space (top-left graph) our method we rst de ne the indicator function:
is transformed in the new space (bottom graphs) accord-

ing to the learned non-linear (left) and linear (right) feat . L if p(xje) > ;
transforms. Notice that in the non-linear case, the area cov (x;0) = 0; otherwise ’
ered by each class collapses to a small area in the trans-

formed space, and points that are close to one of the classe® determine whether a test featurés classi ed as belong-

in the original space converges to one of these collapsed reing to training class, which is 1 if the conditional likeli-
gions. Points in the original space that falls far from any hoodp(xjc) is larger than a threshold and therefore will

of the classes are most likely situated at the origin with a likely be located in the collapsed region representing the
few exceptions located between the origin and one of thetraining class in the transformed feature space. The distan
classes. Also notice that the maximum distance between(10) can then be rewritten as follows:

points in the transformed space happens when points belong

to different training classes, and the minimum distance oc- p(x;; X;) P « dl(e(lK)(Xi X)) + dz(e(gK)(Xi X))+

(11)

curs when points belong to the same training class. Finally, K)ro oo (PR
the top-right graph of Fig2 displays the receiver operat- da(es™ (xi:x))) + da(es " (xi: XJ()l)é)
ing characteristics (ROC) curves of the classi cation t&ssu (K)o o

using a similarity-based classi er for the non-linear aimd |~ Where the eventsi™’(x;;x;) for each training sek

ear feature transformations. To generate these curves, 1 |(K)(Xi;Xj) 2 f0;1g and f:l e|(K)(Xi;Xj) = 1) and
training sets (with 100 points per class) were generated todistances), are de ned as follows:
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&V0aix) = T (xic) QCZZK (1 ' A R
(xj;c2)), representing the event that none of test de-  oss | - Test et orror ORIGINAL
scriptors fall in any of the training classes of training et et emor UFT
setK, so bothx; andx; collapse to a region around

the origin of the new feature space;

4
@

True positive
o
e o
g o
FP at TP = 95%
s o
S

Q 08 —Test set ORIGINAL
—Test set UFT 0.;
K 075 est set 4
e (xiix) =1 T (@ (xiic) (xic), ; i I !
representing the event that both descriptors fall in the o0 g R 8t 02 omgsethiec 8T
same training class of training g€t which means that @) b
bothx; andx; collapse to a small area covered by the Figyre 3. Graph (a) displays the ROC curves of the test séiin t
training class in the transformed space; original feature space (red curve) and transformed (UF&Esp
(K) Q Q (black curve). For comparison purposes, we also included th
e (Xi;Xj) (1 2k (1 (xi;Cl))Q ook (4 curve (labeled 'test set TRAINED’, cyan dashed) for the case
(Xj:c) + ook (1 (xi;c))(@ 622K (1 where the feature space described in Setwas trained speci -
1

. : ; cally for the test classes. Graph (b) shows the evolutiohefdlse
fTEl)|(|IS, icrf)()))n,erg? ;ﬁzetr;g?n?ntghilg\slggé t(?fa':rgiiisr? S%‘g{ detection rate for a true positive ratea§%in the ROC curve. For
while descriptox: does not fall in anv training class each trained feature space (the hor. axis depicts an indeadio
of the samerf[rain]ing set. or descripth; does n?)t all of the 100 feature spaces trained, but note that the igdfx 1])

. L o . the training set errors in the original (blue, solid) anahsfarmed
in any training class of training skt and descriptox; (red, solid) feature spaces are shown. Also, the error tsefur

falls in one of the training classes of training &gt the test sets in the original (green, dashed) and transtbspaces
(K) Q (magenta, dashed) are displayed along with the error reftie
@ (xi;xj) = (1 x (1 (xi;c))(@ UFT feature space (black, thick solid) described in Ha.
c22K (1 (Xj 1 C2))(1 c32K (xi;cs) (Xj ;1 C3)),

representing the event that descriptorsindx; fall in

two different training classes of training g€t _ )
represented bR ""rand the set of test classes is denoted
the distancesl, have the conditional expected value by RS, whereR'st' RUan = .

Ek (xi) (] )kjei(K)(Xi;Xj )], and in general The simple example involves a 1-D problem, such that
dr<dqy<ds<dy. yi =1,and y, 2 [0;20] First, retrieve two random test
. o classes to fornR **stwith the restriction that ;  2j =4,
Denoting the likelihood of an evehtfor | 2 f 1; 2; 3; 4g) and randomly generate 200 test points (100 for each class)
between two test points andx; , given that they belongto  according to the distribution for the test class. This is the
the same test class ﬂéefK)(Xi ;Xj)iVi = Y;) we observe tﬁst probllzm for which we want tﬁ crehatle(zj % fea;cjure spﬁpe
(K) ry v v \ivy — (K) (v oy \ivy — vy that provides a more accurate threshold-based matching
tha(tf)(el _(X".X’ )iy' = %) > p(ﬁ?z (_X")_(’ )D:' =Y assier ‘Then, randomly select a certain number of sets
ples (Xi;xj)iyi = yj) > p(e; " (Xi;xj)jyi = yj). On K 2 R "N where each set contains two training classes
the other hand, we also note that for test points belonging toyith i1 »i 4. For these experiments, we select 100
different test classes, we havp(:e(SK)(xi Xy 6 y;) > setsK, each used to produce one feature space. Notice that
p(e(lK)(Xi X)iyi 6 ;) > p(egK)(xi x;)iyi 6 ;) > this setup respects all the assumptions (same range of train
(K)ro o s ) ing and test points, and similar within and between training
p(e; , (i X )yi 8 Y ).dTherefore, if our methoddcan Sub- and test class variances) made in Se8. For each train-
stantially increasg -, +'q;+q, and decreasg o4 ¥ q, ing setk 2 R "N we train the non-linear feature transform
in the transformed space (compared to the original space)described in Se.1 for 200 training points (100 for each
the average distance between test points of the same class igass) randomly generated according to the distribution of
likely to be relatively much smaller than points from differ  the respective classes. Then given all trained featureespac
ent classes when compared with the same distances in thegne distance between two pointsandx; is computed with
original space. the aggregation approachQ). Fig. 3-(a) displays the ROC
: curve comparing the results of the of the aggregated fea-
2.3. Simple Example ture space (UFT) with the results in the original space and
In this section, we show an example that demonstratesthe results of a non-linear feature spa8gtfained specif-
the functionality of our approach and illustrates the intu- ically for that test set. Fig3-(b) depicts the value of the
ition explained before. In order to facilitate the explana- false positive rate (from the ROC curve) at the operating
tion, note that the test set represents the problem one inpoint where the true positive rate 8% (same criterion
tends to solve, and the training sets are the ones availablg@roposed by Winder and Browr2%]). In this graph, the
to train the feature spaces to be combined. For the prob-following curves of the evolution of the false positive er-
lems in this section, each poifit;;y;) with x; 2 <" and ror rates are shown: the training set errors in the original
yi 2 f1;2gis sampled using the following Gaussian dis- and transformed spaces, the test set errors in the original
tribution: x;  G( vy,; ii ). The set of training classes is and transformed spaces for each feature space, and the UFT
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Figure 4. The rst row shows the probability of each one of the
four events given pair of test points from the same clas$f(rig
graph) and from different classes (left). The second ropldis
the average distances in the original (right) and transéareft)
space given each of the four events.

Events

error.
In Fig 4, we show the probability of each of the four

events given test points belonging to the same and differ- ,
ent classes (top row) and the average distances per event

(bottom row) described in Se2.2, where =2 the stan-
dard deviation of the training class distribution (rech#it
represents the threshold in the de nition of functigr; c)
(12), which describes if a point belongs to a clasg). No-
tice that this example illustrates the points raised in seat
tion about the event probabilities and distance modi aatio
from original to transformed feature space.

3. Experiments

We applied the UFT on two publicly available databases
built to compare the performance of local image descrip-
tors. We rst train the non-linear feature transforms using
the training dataset proposed by Winder and Brow#| [
(see Fig.5). This database consists of more tHa0, 000

CLASS 1 CLASS 2 CLASS 3

Figure 5. Example of the training patche<].

ing deformation values proposed by Heizal. [11]: devia-

tion of 0.25 pixels in position, 11 degrees in orientatiod an
12%in scale. In the experiments, we used the multi-way
matches in the Trevi Fountain and Yosemite Valley data set
as the training patches. The training was based on randomly
selectedN 5pes labels from these datasets for training and
N abeis different labels for validation, which were used to
train Nteature spacefION-linear feature extractors as described
in Sec.2.1. The aggregation of the feature extractorsis done
as described in Se@.2, producing the UFT. For testing,
we used the patches produced by the Notre Dame matches,
from where 50,000 match pairs and 50,000 non-match pairs
were randomly selected.

All image patches;, 2 <% 64 (assumed to contain
the gray values of the image patch) are pre-processed as
follows:

1. Normalization:x®) = “t—*a- where ,, is the
mean gray value of the pa'tnch angd, denotes stan-
dard deviation of the gray values of the patch;

. Smoothing:x® = G(0; s) x®, which is a con-
volution between the image patch and a Gaussian lter
G(:) with standard deviations;

. Spatial weighting:x® = x,, x®@, wherex,, 2
<64 84 is a patch containing a Gaussian centered at
position [32:5; 32:5] with standard deviation,, and
denotes the element-wise matrix multiplication (this
operator increases the weight of points at the center of
the window compared to points at the borders). The
patchx @ is the one used for training and testing.

Using the error rate @5% detection rate (determined
with the ROC curve) over the validation set to compare per-
formance, we reached the following values for each of the
parameters above: number of training classes per feature

image patches, sampled by back-projecting 3-D points totransformNapeis = 50; number of feature transforms to
2-D images from scene reconstructions, where each patctbuild UFT Nteature spaces 50; (although, we note that af-

is labeled according to the scene location it belongs (aotic

ter 10 feature spaces, the performance is already stable),

that a label represents a 3-D scene location, and that eachs = 2:0 for the smoothing pre-processing, but the error
label contains between 2 and 50 patches). The changesesults at95% were reasonably stable fog 2 [1:5; 4:0];

present in each patch are due to variations in viewpoints, w
scene brightness and partial occlusions, but note that all

24 for the spatial weighting pre-processing; and
2 [1;20]in the kernel 8) is determined through cross-

patches are aligned to the same scale, orientation and povalidation for each new feature space. Finally, using the

sition to a64  64-pixel image patch. Given that typical
interest point detectors (used to select locations, aatent

feature learning algorithm of Se2.1, the dimensionality of
each transformed feature space was cross-validated to have

and scales to extract local descriptors) have a much poored9 dimensions.

precision than the reconstruction proposed] [we also ap-
ply random deformations by arti cially warping the patches

of both the training and test sets, which introduces robust-

ness to those deformations. Speci cally, we use the follow-

Fig. 6-(a) shows the ROC curve of UFT along with
the curves produced by the raw patch (blurred and down-
sampled ta32 32[11]; see label SSD, standing for sum
of squared distances) in its original space and its prifcipa



old, and the image regions are considered to be a a corre-
spondence if there is at least58% overlap between the
regions projected onto the same imadé][ For all eight
cases available on-lin€ f]*, UFT clearly outperforms the
best features in thé&-precision versus recalturves (see
Fig.7), which are GLOH and SIFT. The only case where the
§ X performance is comparable is for a few cases in the 'bark’
e ©  sequence (rst case on the top left of Fi). As a reminder,

(a) (b) these curves are computed by varying the matching thresh-
Figure 6. The ROC curves in (a) displays a comparison betweenold and calculating the following values:
UFT and other methods described in the text. The error rdtes a

# correct matches

detection rates d5%in graph (b) shows the evolution of the test recall = # correspondencés
error as new learned non-linear feature spaces are agedetyat 1 recision = # false matches (13)
UFT. p ~  # comrect matches# false matches

where# correct matches represents the number of corre-
spondences having a similarity value bigger than the match-

, ing threshold, while# false matches represents the number
component analysis (PCA) space. We also show the curvéyf imes a similarity bigger than the matching threshold is

produce by SIFT (designed by Vedaldif using the same  fonq in any matching (note that false matchings cannot be
parameters as by Windet al. [11, 27]. We observe that correspondences).

the result; are quite similar to those obta!ned by those au-  pqr the complexity analysis, the pre-processing part is
thors, which are an error rate (at dgt%ctlon rated%  pegligible and the main run-time complexity is derived from
for S!FTO of 6:3%, for raw patch 0f36:6% andofor PCA  the distance computation between test points and training
of 3498% The UFT achieved an error @&28% which points to produce the kernel matri&; in (8). In general,

is at the same level of the best results obtained by étua  ho number of training points for each classi er is between
al. [11], but note that while our results were obtained from 1900t 2000and the number of descriptors extracted from
simple pre-processed image patches, the best resullSof [ 5 test image is arountb0Q so the matrix< ; would have
were obtained through a series of pre-determined image fea‘size0(103 10%). We believe that with the use of methods
ture transforms, where the parameters of the transformasoy tast similarity computation (resorting to approximate
tions are a}utor_natlcally learned . If one con3|d(_ars t_he US€similarity computations, for example) each feature space
of the original image patch gray values only (with simple ¢an pe computed in negligible time. The problem of hav-
pre-processing steps as the ones proposed above), then oy several feature spaces is an issue that can be solved with
results are supstantlally better than the ones shown_by Huaparallel computation since each feature space is indepen-
et al. [L1], which are around% to 6% at 95%detection  yant of all others. Therefore, the whole transformation can
rate. There are two important advantages with the use ofpq computed quite fast if implemented with parallel algo-

simple pre-processed image patches (as the ones used in thignms and using approximate similarity computations.
paper): 1) potentially ef cient implementation of the tsan

formation (described below), and 2) increase of the subset4. Discussion and Conclusions
of potential matching problems since we do not limit the
type of input image features, as inl]. Fig. 6-(b) displays

the evolution of the error rates (again, at detection rate of
95%) by aggregating each newly learned non-linear feature
transform.

In this paper we proposed a new feature transform, which
we call the universal feature transform, consisting of an en
semble of non-linear feature transforms. We show that it has
competitive detection results for the problem of matching
_ local image descriptors in typical image matching and clas-

Finally, we take the UFT learned above and apply s; cation problems. We also show empirical results demon-
to the matching problems proposed by Mikolajczyk and sirating the functionality of the method and the intuitidn o
evaluation provided by the authors, we compare the perfor-of convergence of the method based on the empirical evi-
mance of UFT, SIFT14], GLOH [15] and cross-correlation  gence presented in this paper. We are also working on show-

(CC), using interest points detected with the Hessian-&f n  jnq the applicability of this method in current matching and
detector. In order to generate the patckgs 2 <8 64
to be pre-processed and further transformed by UFT, we 'The bark sequence (row 1, column 1) represents zoom andorotat
take the parameters produced by the Hessian-Af ne detec-changes of a textured scene, the bike sequence (row 1, cajymep-

. T, . . . resents image blur deformations of a structured scene,ahedequence
tor, which are the position, orientation, and two dimenalon oy 1, column 3) represents zoom and rotation changes alatsted
scale deformation (one in the main orientation and anotherscene, the graf ti scene (row 1, column 4) represents a wimhange
in an orthogonal orientation), and align the patch accord- of a structured scene, the Leuven sequence (row 2, columepigsents
ingly. We used the threshold-based matching strategy (aélght changes of a structl_Jred scene, the tree sequence (roaiinn 2)

. . epresents blur deformations of a textured scene, the UBGesee (row
already mentioned above), where two regions are matCheclé, column 3) represents JPEG compression deformationghandall se-

if the distance between their descriptors is below a thresh-quence (row 2, column 4) represents viewpoint changes otaresl scene
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Figure 7.1-precision versus recall curves for all eight cases avialédr testing [L5] using the features UFT (proposed in this paper),
SIFT [14], GLOH [15] and CC, which is the raw patch cross correlation.
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visual classi cation problems. Also, we plan to use UFT in [10] X. He and P. Niyogi. Locality preserving projectionsn |
the features designed by Hua et &l1][in order to improve NIPS 16 2004.3

even more the performance shown by the most accurate defl1] G. Hua, M. Brown, and S. Winder. Discriminant embedding
scriptors proposed by them. Finally, we also plan to study for local image descriptors. WCCV, 2007.2, 6, 7, 8

the impact of different kernels on the results as proposed by[12] Y. Ke and R. Sukthankar. Pca-sift: a more distinctiveree

Cristianiniet al. [7]. sentation for local image descriptors. @VPR pages 506—
513, 2004.2
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