Automatic and Efficient Long Term Arm and Hand Tracking for Continuous Sign Language TV Broadcasts

Tomas Pfister1, James Charles2, Mark Everingham2, Andrew Zisserman1

1Visual Geometry Group
University of Oxford

2School of Computing
University of Leeds
Motivation

Automatic sign language recognition:

- We want a large set of training examples to learn a sign classifier.
 - We obtain them from signed TV broadcasts.
- Exploit correspondences between signs and **subtitles** to automatically learn signs.
- Use the resulting sign-video pairs to train a sign language classifier.
Objective

Find the position of the head, arms and hands

- Use arms to disambiguate where hands are
Difficulties

- Colour of signer similar to background
- Overlapping hands
- Hand motion blur
- Faces and hands in background
- Changing background
Overview

Our approach:
- **First**: Automatic signer segmentation
- **Second**: Joint detection
Hand detection for sign language recognition

State-of-the-art: Long Term Arm and Hand Tracking for Continuous Sign Language TV Broadcasts [Buehler et al., BMVC’08]

Method: generative model of foreground & background using a layered pictorial structure model

Necessary user input: 75 annotated frames per one hour of video (3 hours work)

Performance: accurate tracking of 1 hour long videos, but at a cost of 100s per frame
Hand detection for sign language recognition

State-of-the-art: Long Term Arm and Hand Tracking for Continuous Sign Language TV Broadcasts [Buehler et al., BMVC’08]

Method: generative model of foreground & background using a layered pictorial structure model

Necessary user input:
75 annotated frames per one hour of video (3 hours work)

- **Colour & shape model**
- **HOG templates**

Out work – automatic and fast!

Find pose with minimum cost

Input

- Find pose with minimum cost

No manual annotation

Runs in real-time

Performance: accurate tracking of 1 hour long videos, but at a cost of 100s per frame
Overview

Our approach:
- **First**: Automatic signer segmentation
- **Second**: Joint detection
The problem

- How do we segment the signer out of a TV broadcast?
One solution: depth data (e.g. Kinect)

- Using depth data, segmentation is easy

- But we only have 2D data from TV broadcasts…
Constancies

- How do we segment a signed TV broadcast?

Clearly there are many constancies in the video

- Box contains changing background
- Signer never crosses this line
- Same signer
- Part of the background is always static
Co-segmentation

- Exploit constancies to help find a **generative model** that describes all layers in the video
Co-segmentation – overview

Method: co-segmentation – consider all frames together

For a sample of frames obtain …

Background

Foreground colour model

… and use the background and the foreground colour model to obtain

Per-frame segmentations

hist(...)
Find a “clean plate” of the static background

- Roughly segment a **sample of frames** using GrabCut
- Combine background regions with a median filter

Use this to refine the final foreground segmentation
Foreground colour model

Find a colour model for the foreground in a **sample of frames**
- Find faces in a sub-region of the video
- Extract a colour model from a region based on the face position

Use this as a global colour model for the final GrabCut segmentation
Qualitative co-segmentation results
Overview

Our approach:
- **First**: Automatic signer segmentation
- **Second**: Joint detection
Segmentations are not always useful for finding the exact location of the hands

Skin regions give a strong clue about hand location

Solution: find a colour model of the skin/torso

Method:
- skin colour from a face detector
- torso colour from foreground segmentations (face colour removed)

Improves generalisation to unseen signers
Overview

Our approach:
- **First**: Automatic signer segmentation
- **Second**: Joint detection
Joint position estimation

- **Aim**: find joint positions of head, shoulders, elbows and wrists
- Train from Buehler et al.’s joint output
Random Forests

- **Method**: Random Forest multi-class classification
- **Input**: skin/torso colour posterior
- **Classify** each pixel into one of 8 categories describing the body joints
- **Efficient simple node tests**

\[
\begin{align*}
 f(a) &= x_a \\
 f(a, b) &= |x_a - x_b| \\
 f(a, b) &= x_a^+ - x_b^+ \\
 f(a, b) &= x_a^+ + x_b^-
\end{align*}
\]

- **Colour posterior**
- **Random forest**
- **PDF of joints**
- **Estimated joints**
Evaluation: comparison to Buehler et al.

- Joint estimations compared against joint tracking output by Buehler et al.
Evaluation: comparison to Buehler et al.
Evaluation: quantitative results

Our method vs. Buehler et al. compared against manual ground truth

- Buehler et al. (2008)
- Our Method

e.g. 80% of wrist predictions are within 5 pixels of ground truth

Manual ground truth
Evaluation: problem cases

- Left and right hands are occasionally mixed

- Occasional failures due to a person standing behind the signer
Evaluation: generalisation to new signers

Trained & tested on **same** signer

Trained & tested on **different** signers

Generalises to new signers
Conclusion:

- Presented method which finds the position of hands and arms automatically and in real-time
- Method achieves reliable results for hours of tracking and generalises to new signers

Future work:

- Adding spatial model to avoid mixup of hands

Web page:

- This presentation is online at: http://www.robots.ox.ac.uk/~vgg/research/sign_language
Dynamic background

- How do we find the rectangle spanning the dynamic background?
- Reverse the question: **what area is permanently not dynamic?**

- The rectangle in the result spans the dynamic background
Parameter optimisation experiments
The following computation times are on a 2.4GHz Intel Quad Core I7 CPU with a 320×202 pixel image. The computation time for one frame is 0.14s for the co-segmentation algorithm and 0.1s for the random forest regressor, totalling 0.2s (5fps). The per-frame initialisation timings of the co-segmentation algorithm are 6ms for finding the dynamic background layer and static background, 3ms for obtaining a clean plate and 5ms for finding the image sequence-wide foreground colour model, totalling 14ms (approx. 24min for a 100K frames). Each tree, as used in our single signer random forests, takes 4.5 hours to train.
Todo: decide exactly what else to show. Could do a video of the above and use it to explain?