Quantum Annealing meets Machine Learning

William Macready
The good news

- Exploiting quantum mechanics can dramatically accelerate certain computations
 - Factoring of an n bit integer
 - Classically: $O\left(\exp\left(n^{1/3}\right)\left(\log n\right)^{2/3}\right)$
 - Quantum: $O\left(n^3\right)$ [Shor’s algorithm]
 - Blind search in database of 2^n items
 - Classically: $O\left(2^n\right)$
 - Quantum: $O\left(2^{n/2}\right)$ [Grover search]

The bad news

- It is difficult to build hardware that can support quantum algorithms
 - Largest experimentally realized version of Shor’s algorithm factored $21=7\times3$
The good news

• A recent computational model may offer a faster path to scalable quantum computation
 – Quantum annealing
 – A specialization of adiabatic quantum computation

• Certain problems (e.g. Grover search) can be accelerated now
 – In a nutshell: programmable hardware exploits quantum mechanics to quickly equilibrate to a Boltzmann-like distribution which can be rapidly sampled

• QA→ML:
 – new sampling and optimization capabilities may be used in machine learning applications

• ML→QA:
 – circumvent practical limitations of current hardware platforms
What’s ahead?

• QC introduction
• Quantum annealing
• Hardware implementation
 – benchmarking
• Domains of application (QC→ML):
 – Binary and structured classification
 – Sparse unsupervised learning
• Challenges (ML→QC):
 – Circumventing connectivity; richer models with hidden variables
 – Sampling when the sampling distribution is imperfectly known
 – Extending the range of applicability
Idealized Quantum Mechanics (zero temperature, no environment)

- **Key new ingredients:**
 - The state describing a physical system is a vector and measurements on the system are matrices which can potentially alter the state vector
 - QM is non-commutative

- **Single qubit system**
 - The qubit is the quantum analog of a bit and is described with a normalized 2-dimensional vector

If you measured a qubit in state $|\varphi\rangle$ you would observe 0 with probability $|\alpha_0|^2$ and 1 with probability $|\alpha_1|^2$.
Dynamics of many qubits

• With \(n \) qubits there are \(2^n \) basis state vectors: \(|00 \cdots 00\rangle\) to \(|11 \cdots 11\rangle\)

• An arbitrary state is a normalized vector \(|\varphi\rangle = \sum_b \alpha_b |b\rangle\)

 \[|\alpha_b|^2 \text{ is the probability of observing joint configuration } b = b_1 b_2 \cdots b_n \]

• An important operator acting on a state vector gives the energy, called the Hamiltonian, \(H \)

 \[H \text{ is a Hermitian } 2^n \times 2^n \text{ matrix; in general } H(t) \text{ may vary with time} \]

 • Eigenvalues are real

 • \(H(t) \) determines how a state vector evolves in time:

 \[\partial_t |\varphi\rangle = -iH(t)|\varphi\rangle \text{ [Schroedinger equation]} \]

 • When excess energy may be exchanged with an environment this dynamics acts to evolve state vectors to the eigenvector corresponding to lowest eigenvalue of \(H \) (minimize the energy)
Hamiltonians and Minimization

- We can solve an energy minimization problem P by encoding the energy function on the diagonal of H

\[
H_P = \begin{bmatrix}
E_{0\ldots00} & 0 & 0 & 0 & 0 & 0 \\
0 & E_{0\ldots01} & 0 & 0 & \ldots & 0 \\
0 & 0 & E_{0\ldots10} & 0 & \ldots & 0 \\
0 & 0 & 0 & E_{0\ldots11} & 0 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & 0 & \ldots & E_{1\ldots11}
\end{bmatrix}
\]

- lowest energy state $|b^\ast\rangle$ satisfies $H_P|b^\ast\rangle = E_b^* |b^\ast\rangle$; diagonalizing H_P equivalent to minimizing E_b

- We’ll be focused on Ising energy functions:

\[
E_b = \sum_{i \in V} h_i b_i + \sum_{(i,i') \in E} J_{i,i'} b_i b_{i'}
\]

where $G = (V, E)$ is a graph of allowed variable interactions
Adding quantum mechanics...

- Quantum mechanics includes off-diagonal elements in H
 - Example realized in hardware acts to flip bits

\[
H = \begin{bmatrix}
E_{0\ldots00} & \Delta & \Delta & 0 & 0 \\
\Delta & E_{0\ldots01} & 0 & \Delta & 0 \\
\Delta & 0 & E_{0\ldots10} & \Delta & \vdots \\
0 & \Delta & \Delta & E_{0\ldots11} & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & E_{1\ldots11}
\end{bmatrix} = H_P + H_{od}
\]

Lowest eigenvector not aligned with any classical basis vector -- superposition.
Quantum annealing

• The optimization problem we want to solve is defined by H_P

• The inclusion of H_{od} gives ground state eigenvectors which are linear combinations of classical states

 — Superposition: quantum mechanically we explore qubits assuming states which are both 0 and 1

 — This mechanism can be used to tunnel out of local minima in favour of better local minima

Diego de Falco and Dario Tamascelli [RAIRO-Theor. Inf. Appl. 45, 99 (2011)]
Use quantum effects to explore the search space

• Look to simulated annealing to exploit the exploration offered by quantum superposition

• Take time varying Hamiltonian

\[H(t) = A(t/\tau)H_P + B(t/\tau)H_{od} \]

• Eigenbasis: \(H(t)\ket{\varphi_n(t)} = \lambda_n(t)\ket{\varphi_n(t)} \)

• Start in a ground state of \(H_{od} \)

 For this state all configurations \(\ket{b} \) are equally likely to be observed

• Slowly evolve ground state by turning up \(H_P \) and turning down quantum effects \(H_{od} \)
Quantum Annealing

Farhi et al., Science 292, 472 (2001)

\[H(t) = A(t/\tau)H_P + B(t/\tau)H_{od} \]
What limits the speed of QA?

- Hardness of optimization problem manifested in a gap which may go to zero exponentially fast with the problem size

Like simulated (thermal) annealing:
 Equilibration time related to eigenvalue difference of transition matrix

Evolution time:

\[\tau \approx \frac{\max_t |\langle \varphi_1(t) | H_{od} | \varphi_0(t) \rangle|}{gap^2} \]
How fast is QA?

• QA gives Grover’s quadratic speedup (Farhi et. al., Childs et. al.)
• QA easily simulates SA (Somma et. al.)
• There is also other experimental, numerical and theoretical evidence of speedups. (Brooke at. al., Kodawaki et. al., Matsuda et. al.)

Note: not simulating quantum annealing on classical hardware, but running on quantum hardware
A physical qubit

- Qubits are loops of superconducting wire (Josephson junctions)
- Direction of circulating current indicates the qubit states $|0\rangle$ and $|1\rangle$
- With external magnetic field we can bias towards one state or the other; linear terms in Ising model
- Auxiliary loop allows control of off-diagonal elements

Control the amount of superposition from quantum to classical bit; the Δ terms of H_{od}
Coupling qubits: a unit cell

- Qubits are stretched into long thin loops and coupled together
- Couplers give programmable pairwise coupling terms in Ising model
- Unit cell consists of 8 qubits
Tiling the chip with unit cells

4x4 array
C8 chip

• Next chip (available in September) has 8x8 array of unit cells
 — 512 qubits
 — Programmability: 512 h values; 1472 J values

• Duty cycle:
 — Programme h/J
 — Anneal
 — Readout

• Timing:
 — Programme + 1000 anneal/readout loops in <100ms

• Treewidth is 33
The full package

• Processor packaged on motherboard to connect to off chip elements
• Inputs coming from room temperature are filtered
• and system cooled to 20mK in a magnetically shielded environment (50000x smaller than earth’s magnetic field)
Practical realities: from ideal to realistic QM

• At non-zero T an equilibrium system is described the density matrix: $\rho = \exp(-\beta H)/Z(\beta)$

 - Like probability density $tr(\rho) = 1$ and $\rho > 0$
 - Interactions in Hamiltonian’s are typically sparse and pairwise.
 - Quantum versions of conditional independence, Markov random fields, belief propagation etc.
 - Significantly complicated by the fact that “clique potentials” are operators and do not commute

• System never completely isolated from its environment

 - There is an interaction Hamiltonian with the environment and the hidden variables of the environment must be marginalized out
Prognosis: scalable quantum annealing?

- Speedups from quantum annealing still apply at non-zero temperature
 - In some cases inclusion of low temperature can help
 - At high temperature gains of QM are lost
 - Can get to low temperatures $E/k_B T \approx 3-5$

- Environmental coupling is more problematic
 - Shielding eliminates stray magnetic fields
 - Chip fabrication defects/impurities most significant
 - Modeling suggests current chip should work well at 512 qubits, but performance may degrade as chip scales unless chip imperfections can be reduced
 - Fortunately, noise reduction is linearly proportional to fidelity
 - If we can halve noise then we should obtain the same performance at 1024 qubits as available at 512 qubits
 - 10x noise reduction should be possible in the near term
Benchmarking

- Random Ising models on 4x4 chip
 - $h \in \{-3, -2, -1, 0, 1, 2, 3\}$
 - $J \in \{-3, -2, -1, 0, 1, 2, 3\}$ on hardware edges
- Exact grounds states determined by belief propagation / MIP
- Calculated run time to find ground state with 99% certainty

For small N annealing time scaling linearly on 4x4 hardware

Early version of 8x8 hardware
Annealing time

A 108 variable Ising problem

Conclusion: prob. distribution peak shifts to right as interp. time increases
Consistent with adiabatic evolution

S. Boixo, Z. Wang, D. Lidar
Putting QA to work

• **<speculation>**

 – There will be QA hardware more widely available in the next 5 years that can address sparse Ising problems of up to 5000-10000 variables

 – Time to low energy solutions likely to be dramatically faster than is possible using classical hardware

 – The machines will be stochastic; i.e. returned values will be samples from some distribution

 </speculation>

• These machines will have constraints on the types of problems that can be natively addressed

 – Sparsely connected, but treewidth may be high (i.e. $tw > 120$)

 – Optimization will be unconstrained

 – Pairwise interactions

 – Problems requiring high precision specification of h/J will be more difficult

 – There will be no closed form description of the sampling distribution
QA→ML: applications of QA

• Lots of optimization in ML, but the vast majority is continuous optimization
 – Relatively little exploitation of combinatorial optimization

• A few things we + collaborators have tried:
 – Structured classification
 • SSVM: \(y(x) = \arg\min_y \{ \langle h(x) | y \rangle + \langle y | J(x) | y \rangle \} \)
 – Use standard approach to learn \(h(x) \) and \(J(x) \) from training set; subgradients evaluated by quantum annealing
 – Convex optimization algorithms need to be slightly improved to accommodate potentially noisy subgradients
 • CRF: \(P(y|x) \approx \exp\{-\langle h(x) | y \rangle - \langle y | f(x) | y \rangle\} \)
 – Gradient with respect to fitting parameters requires expectations which we evaluate in hardware using importance sampling

 – Binary classification with new regularization (Neven et al)
 • \(y = \text{sign}(\langle w | c(x) \rangle) \) where weights \(\{ w_\alpha \} \) are Boolean valued, and \(\{ c_\alpha(x) \} \) are weak classifiers
 • Regularize using \(R(w) = \|w\|_0 = \langle 1 | w \rangle \)
 • Use squared loss \(L(w) = \sum_i [m_i(w) - 1]^2 \) where the margin is \(m_i(w) = y_i(\langle w | c(x_i) \rangle) \) then minimizing \(L(w) + \lambda R(w) \) is an Ising optimization problem for the optimal weights \(w \)

 – Unsupervised L0 dictionary learning
 • Factor a matrix \(X = DW \) by minimizing \(\|X - DW\|_{Fro} + \lambda \|W\|_0 \); all elements of \(W \) are Boolean-valued
 • Block coordinate descent on \(D \) then \(W \); each column of \(W \) is an Ising optimization
ML → QA: outstanding problems

• Extend applicability of QA hardware
 - Given a fixed factor graph develop methods to optimize objectives defined with different factor graphs
 - Blackbox optimization: develop methods for objectives not having a factor graph
 • i.e. black box optimization where objective function is code without a closed form expression

• Monte Carlo methods
 - Hardware is stochastic and we can sample i.i.d. very quickly
 - Unfortunately, the sampling distribution is not known exactly; although to lowest order it is roughly Boltzmann
Circumventing a sparse pairwise factor graph

- Native problems are pairwise and sparse
- Can always reduce higher-order interactions to pairwise, but at the cost of additional qubits
 - Qubits are a scarce resource: for certain problem types are there more efficient reductions?
- We can simulate connectivity by slaving qubits
 - Strong ferromagnetic couplings \(-\lambda s_i s_j (\lambda > 0)\) sets \(s_i = s_j\) in low energy solutions
 - New variables mediate interactions creating qubit “wires”
 - Not scalable as finding embeddings is NP hard
 - What to do?
Problem decomposition

• Even 10 000 qubits may be too small for many applications

• What are good approaches for decomposing large optimization problems down to a sequence of smaller problems

 — Lagrangian relaxation: ok for relatively simple problems; not very effective for harder problems
Monte Carlo

- Hardware acts as a source of fast i.i.d. samples from a tunable Boltzmann-like distribution
 - However, we do not have a closed form description of the sampling distribution
 - Are there methods to exploit hardware to adaptively shape the h/J input parameters to certain tasks?
 - Creating a proposal distribution for MCMC
 - Evaluating expectations
 - Estimating partition functions
Summary

• Quantum annealing machines offer opportunities for new classes of “tractable” problems
 – What new learning algorithms can be constructed that rely on solving sparsely connected combinatorial optimization problems?
 – Can Monte Carlo algorithms take advantage of samples from Ising models that are roughly Boltzmann distributed?

• For broadest applicability a number of key problems need to be addressed:
 – How can we effectively apply pairwise fixed-connectivity solvers to the solution of higher-order models and/or models with alternate variable connectivity?
 – How can we decompose larger problems into smaller manageable chunks

• Not new problems, but certainly new incentives for tackling some of these issues