Information Contagion:
An Empirical Study of the Spread of News on Digg and Twitter Social Networks

Kristina Lerman
Rumi Ghosh
USC Information Sciences Institute
Online social networks have become important channels for the spread of timely and relevant information
Information flow on networks

Network 1

Network 2

http://www.flickr.com/photos/27318782@N03/4639307471/

http://www.flickr.com/photos/27318782@N03/4639307923
Dynamics of Social Information

How does information spread on online social networks?

• How far and how fast does information flow on networks?
• What factors influence its spread?
• How does the network structure affect dynamics of information flow?
• What does this tell us about the quality of information?

Study these questions through a comparative empirical analysis of two social news networks

• Using URLs as markers for tracking the flow of information
Social news: Digg

Users submit and vote for (digg) news stories

Users join networks to see
- Stories friends submit
- Stories friends vote for

Digg features stories with most votes on its front page
Social news: Twitter + Tweetmeme

Users tweet and retweet* URLs to news stories

*‘Retweet’ = tweet someone else’s post
“RT @x failed bomb plot http://bit.ly/xmas09”

Users join networks to see
- Tweets by users they follow
- Retweets by users they follow

Tweetmeme aggregates all tweets and features most retweeted URLs on its front page

Kristina Lerman (CC) - ICWSM 2010
Social news: Data sets

Digg
- Stories
 - 3,553 stories, promoted in June, 2009
 - Time submitted, promoted
 - Votes for each story
 - Time of the vote
 - Name of voter
- Active users
 - 139,409 who voted for at least one story
 - 71,834 of them following at least one user
 - 258,220 links
 - fan network

Twitter
- Stories
 - 398 most retweeted stories 6/11/09—7/3/09
 - extracted from Tweetmeme
 - Retweets of each story
 - <1000 most recent retweets
 - Time of retweet & user name
- Active users
 - 137,582 who retweeted at least one story
 - Following/follower relations through Twitter API
 - 6,200,051 links
 - follower network
Questions

Usability of Social News
• Do people use Digg and Twitter the same way?
• What effect do differences in the user interface have?

Dynamics of Social News
• How far does information spread on networks?
• How fast does information spread on networks?
• What is the role of network structure?
Basic terms

Submitter

- user who submitted link to a story
- user who first tweeted link to a story

Vote

- digg
- retweet

Fan of user A

- user watching A’s activity on Digg
- user following A on Twitter
User activity: distribution of fans

- Typical number of followers on Twitter ~10, but can be millions
- No typical number of fans on Digg – “long tail”
User activity: distribution of voting

- “Long tail” distribution of user activity
- Difference in slope related to effort of activity [cf Wilkinson 2008]
Dynamics of stories

1: U.S. Government Asks Twitter to Stay Up for #IranElection
2: Western Corporations Helped Censor Iranian Internet
3: Iranian clerics defy ayatollah, join protests

1: US gov asks twitter to stay up
2: Iran Has Built a Censorship Monster with help of west tech
3: Clerics join Iran’s anti-government protests - CNN.com
Dynamics of stories

• Two distinct phases for Digg stories: upcoming and promoted
• Number of votes on both sites saturates after one day
• Saturated value reflects story popularity
Popularity of stories

• Aggregate over all stories to factor out influence of submitter and story quality
• "Inequality of popularity" – some stories much more popular than others
cf social influence study of [Salganik, Dodds & Watts, 2006]
Information flow on networks

Information spreads on a network as fans (followers) vote for (retweet) stories their friends submit or vote for.

... fan votes – i.e., votes from fans
Dynamics of information spread on networks

Digg

Twitter

- Evolution of fan votes qualitatively similar to that of all votes
How far does information spread on networks?

- “Inequality of popularity” no longer observed (social influence accounted for?)
- News spreads farther on Twitter social networks
- On Digg, all stories receive fan votes
How far does information spread among submitter’s fans?

- Most stories on Twitter are never retweeted by submitter’s followers
How fast does information spread on networks?

- Two distinct phases on Digg: stories spread faster through the network before promotion than afterwards
- Twitter stories spread at a uniform rate, but with greater variability
How fast does information spread on networks?

Probability next vote is from a fan

- Two phases on Digg: stories spread faster before promotion than after
- Twitter stories spread slower than Digg stories before promotion, but faster than promoted stories
Network structure

Network sample size

- Digg: 279,725 users
- Twitter: 6,200,051 users

Network density

- Fraction of reciprocal links (i.e., mutual fans)
 - Digg: $f_m = 3.20 \times 10^{-6}$
 - Twitter: $f_m = 2.07 \times 10^{-7}$
- Modified clustering coefficient (fraction of cycles, e.g., $A \rightarrow B \rightarrow C \rightarrow A$)
 - Digg: $f_c = 7.60 \times 10^{-12}$
 - Twitter: $f_c = 1.92 \times 10^{-14}$

Digg network is denser, more inter-connected than Twitter’s
Summary of results

Network structure and information flow

- Digg’s network is denser than Twitter’s
 - News spreads faster initially through Digg’s network than Twitter’s
 - But, it does not spread as far as on Twitter
 - Fans who vote for a story on Digg are also submitter’s fans
- Twitter’s network is sparse
 - Fans unconnected to submitter help spread the story

User interface and information flow

- Before promotion, Digg stories spread mainly through the network
 - Similar to story spread on Twitter
- After promotion, stories spread mainly outside the network
 - Promotion increases story visibility outside the network
 - No equivalent mechanism on Twitter
Related work

- Information flow on social networks
 - Email chains [Wu, Huberman, et al, 2004]
 - Email forwarding chains terminate after a few steps
 - Information flow is slowed by decay in similarity among individuals in a social network
 - Product recommendations [Leskovec, Adamic & Huberman, 2006]
 - Word-of-mouth recommendation chains terminate after 1 or 2 steps
 We find significantly large information spreading chains

- Information diffusion through blogosphere
 - Spread of topics through blogosphere [Gruhl & Liben-Nowell 2004]
 - Information cascades through blog posts [Leskovec et al, 2007]
 - Power law distribution of cascade sizes
 We find a normal distribution of cascade sizes (number of fan votes)
 - Networks derived from observed interactions, rather than declared links (as on Digg, Twitter)
Conclusion

Comparative empirical analysis of online social networks and social news on Digg and Twitter

• Similarities
 • Networks are used on both sites to spread news
 • Information flow on Digg before promotion is similar to information flow on Twitter

• Differences in dynamics can be explained by user interface and network density
 • Digg’s user interface gives high visibility to promoted stories
 • Promotion slows information spread
 • Digg’s network is denser than Twitter’s
 • Affects how fast and how far news spreads

• Dynamics of information flow as a gauge of information quality
 • Social dynamics of Digg [Hogg & Lerman, poster][Lerman & Hogg, WWW 2010]