Knowledge Base Construction with Epistemological Databases

Andrew McCallum
Department of Computer Science
University of Massachusetts Amherst

Joint work with Sameer Singh, Michael Wick, Limin Yao, Sebastian Riedel, Karl Schultz, Aron Culotta.
W. Bruce Croft

Distinguished Professor
Department of Computer Science, University of Massachusetts
BRUCE CROFT, Amherst, MA, 01003-9264
Email: croftg@cs.umass.edu
URL: http://ciir.cs.umass.edu/personnel/croft.html

Publications: (1 to 40 of 233) (total 1436 citations)
Sorted by date | citations

2004
- Xiaoyong Liu, W. Bruce Croft. Cluster-based retrieval using language models. SIGIR, 2004 (0 citations)
- Andrés Corrada-Emmanuel, W. Bruce Croft. Answer models for question answering passage retrieval. SIGIR, 2004 (0 citations)
- Chirag Shah, W. Bruce Croft. Evaluating high accuracy retrieval techniques. SIGIR, 2004 (1 citation)
- Haizheng Zhang, W. Bruce Croft, Brian N. Levine, Victor Lavrenko, A Multi-Agent Approach for Peer-to-Peer Based Information Retrieval System. AAMAS, 2004 (1 citation)
- Donald Metzler, Victor Lavrenko, W. Bruce Croft. Formal models for language modeling. SIGIR, 2004 (0 citations)
- Stephen Cronen-Townsend, Yu Zhou, W. Bruce Croft. A framework for selective query expansion. CIKM, 2004 (0 citations)

2003
- W. Bruce Croft. Language Models for Information Retrieval. ICDM, 2000 (0 citations)

Co-authors | Cited authors | Citing authors: (1 to 40 of 257)
Sorted by date | number | name

- Donald Metzler, 2004 2004 2003
- Xiaoyong Liu, 2004 2002
- Andrés Corrada-Emmanuel, 2004 2002
- Victor Lavrenko, 2004 2003
- Brian N. Levine, 2004
- Chirag Shah, 2004
- Haizheng Zhang, 2004
- Yu Zhou, 2004
Goal Application

A KB of all scientists in the world from papers, reports, web pages, newswire, press releases, blogs, patents,..

- Better tools → Accelerate progress of science.
- Help...
 - find papers to read, to cite
 - find reviewers, collaborators, people to hire
 - understand trends and landscape of science
- Platform for a “New Model of Publishing” [LeCun]
 - post to archive; public comments and ratings.
Attributes of our Task

A KB of all scientists in the world from papers, reports, web pages, newswire, press releases, blogs, patents,..

• Open universe of entities (strong entity resolution essential)
 - not coref into pre-known finite set e.g. in Wikipedia

• Closed list of relation types*
 - not OpenIE *later “open” through “universal schema”

• Low tolerance for error
 - users willing to edit

• Changing world
 - e.g. new papers, people moving institutions,..
Wei Li studies at Xinghua U. Her 2008 publications include W. Li. "Scalable NLP" ACL, 2008.

Knowledge Base Construction

Information Extraction components aren’t perfect. Errors snowball.
1. How to represent & inject uncertainty from IE into DB?
 [POS & shallow parsing, ICML 2004]
 [Entity & Relation Extraction, ACL, 2011]
2. Want to use DB contents to aid IE.
3. IE isn’t “one-shot.” Add new data later; redo inference.

Want DB infrastructure to manage IE.
Human Edits as evidence: [Wick, Schultz, McCallum 2012]

- Traditional: Change DB record of truth
- ✔ Mini-document “Nov 15: Scott said this was true”

- Sometimes humans are wrong, disagree, out-of-date.
- Jointly reason about truth & editors' reliability/reputation.

Epistemological Philosophy

“Truth is inferred, not observed.”
“Epistemological Database”

Entity Extraction \(\rightarrow \) Relation Extraction \(\rightarrow \) Resolution (Coref) \(\rightarrow \) KB

- **Text docs**
- **p(Entity Mentions)**
- **p(Relation Mentions)**
- **p(Entities, Relations)**
- **Structured Data**
- **Human Edits**
- **KB**

Never Ending Inference
[Riedel, Wick, McCallum 2012]

- KB entries locked in
- KB entries always reconsidered with more evidence, time,...
“Epistemological Database”

Resolution is foundational \([KDD 2008; ACL 2012]\)

✗ Not just for coref of entity-mentions...

✔ Align values, ontologies, schemas, relations, events,...

Especially in Epistemological DB: entities/relations never input, only “mentions”
Resource-bounded Information Gathering [WSDM 2012]

✘ Full processing on whole web
✔ Focus queries and processing where needed & fruitful
“Epistemological Database”

Entity Extraction
Text docs
Evidence
Human Edits
Structured Data
Structured Data

Resolution (Coref)
p(Entities, Relations)
Evidence
KB
query

p(Entity Mentions)
p(Relation Mentions)
Inference worker
Inference worker

Inference constantly bubbling in background...

p("truth")

Smart Parallelism [ACL 2011; NIPS 2011]

✘ MapReduce, black-box

✔ Reason about inference & parallelism together
MCMC, parallel, distributed [ACL 2011; submitted 2012]

✘ Unroll whole factor graph. Limited model structures.
✔ Focused sampling, conflict resolution, particle filtering
MCMC, parallel, distributed [ACL 2011; submitted 2012]

✘ Unroll whole factor graph. Limited model structures.
✔ Focused sampling, conflict resolution, particle filtering
“Epistemological Database”

Text docs → Entity Extraction → Relation Extraction → Resolution (Coref) → Structured Data → KB

- p(Entity Mentions)
- p(Relation Mentions)
- p(Entities, Relations)

Evidence: Human Edits

Inference constantly bubbling in background...

MCMC, parallel, distributed [ACL 2011; submitted 2012]

✗ Unroll whole factor graph. Limited model structures.

✔ Focused sampling, conflict resolution, particle filtering
“Epistemological Database”

MCMC, parallel, distributed [ACL 2011; submitted 2012]

❌ Unroll whole factor graph. Limited model structures.
✔ Focused sampling, conflict resolution, particle filtering
“Epistemological Database”

- Text docs
- Human Edits
- Structured Data
- KB

Inference constantly bubbling in background...

- Entity Extraction
- Relation Extraction
- Resolution (Coref)

MCMC, parallel, distributed [ACL 2011; submitted 2012]

- Unroll whole factor graph. Limited model structures.
- Focused sampling, conflict resolution, particle filtering
Research Ingredients

1. Learning
2. Entity Resolution
3. Human Edits
4. Relations with “Universal Schema”
5. Probabilistic Programming
Entity Resolution

Parallel / Distributed
Interplay between modeling & efficiency
Entity Resolution

Entity resolution by CRF with pairwise factors
Entity Resolution

Entity resolution by CRF with pairwise factors
Entity Resolution

Entity resolution by CRF with pairwise factors
Entity Resolution

Entity resolution by CRF with pairwise factors
Entity resolution by CRF with pairwise factors
Entity Resolution

Entity resolution by CRF with pairwise factors
Entity resolution by CRF with pairwise factors

These two proposals can be evaluated (and accepted) in parallel.
Entity Resolution in Parallel by Map-Reduce

[Singh, Subramanian, Pereira, McCallum, ACL, 2011]

“Reduce step” “Map step”
Parallelism = faster
Distributed Entity Resolution with hierarchical structure

Entity resolution by CRF with pairwise factors

Super-entities infer good “data distribution”

Sub-entities infer good “block moves”

Inference used not only for “truth discovery”, but also simultaneously for “strategizing about data distribution”
Smart Parallelism = much faster

[Singh, Subramanian, Pereira, McCallum, ACL, 2011]
Pair-based Coref
Pair-based Coref

Super-Entity
Entity
Sub-Entity
Mention
Entity-based Coref
Entity-based Coref

Super-Entity
Entity
Sub-Entity
Mention
Entity-based Coref

More efficient. Fewer factors; avoid N^2.
Joint inference on all attributes of entity. Pair-wise couldn’t
50k mentions “Bill Clinton” hidden under one sub-entity.
Avoid CRF problems with “changes in network cardinality”
Better supports human edits

[Wick, Schultz, McCallum, ACL, 2012]
Hierarchical vs Pairwise Evaluation
(single threaded)

145k mentions
Accuracy versus Time

1.3m mentions
Accuracy versus Time

Currently: 80m mentions
papers, authors, institutions, venues
Entity-based Coref for Wikipedia & Newswire

- Combine structured data...
 Freebase & Wikipedia infoboxes

- ...with unstructured text.
 NYTimes articles
Mr. [Moyo |PER] had shut down most of the nation 's private newspapers and amassed wide influence within the government before being implicated last month in a scheme to prevent [Joyce Mujuru |PER], a regional politician, from taking a vacant post as [Zimbabwe |LOC]'s vice president. Ms. [Mujuru |PER] was the choice of President [Robert G. Mugabe |PER], and she is currently running the country while he is on a vacation in [Malaysia |LOC].

Currently: 100k Wikipedia entities, 20 years NYTimes
4m anchor texts, 300k unique mention strings
Entity Resolution

Parallel / Distributed
Interplay between modeling & efficiency

Open Questions

Lots of juicy research at ML+systems intersect

- Formalize asynchronous distributed MCMC.
- How to select subset of variables for worker.
- Get coref working for 10 billion mentions...
#3

Probabilistic Reasoning about Human Edits

Humans will want to correct DB, add to DB
Entity-based Coref

Super-Entity
Entity
Sub-Entity
Mention

Pereira
SRI

Pereira
Google
Entity-based Coref
Entity-based Coref

[Wick, Schultz, McCallum, AKBC, 2012]
Benefits of Probabilistic Reasoning about Human Edits

Database quality versus the number of correct human edits

Edit incorporation strategy
- Epistemological (probabilistic)
- Overwrite
- Maximally satisfy

Our probabilistic reasoning
Local
Transitive Closure
Traditional
Overwrite

Figure 4a: Comparison of our epistemological approach to the two baselines (deterministic) with maximally satisfying. The baseline approach that deterministically incorporates the errorful edits instead of our epistemological approach to the two baselines (which are deterministically required to merge the edited entities) is actually substantially better than the two baselines (which are deterministically required to merge the edited entities). After some error analysis, we determine that a major reason for this improvement is that the user edits propagate beyond the entity pair they were initially intended to merge. In particular, as the user edits become applied, the quality of the entities increase. As the quality of the entities increase, the model is able to make more accurate decisions about other mentions that were initially intended to merge. In particular, as the user corrections could not propagate thus placing the burden the natural language processing users to provide additional edits. In a traditional approach, these additional 18 mentions were correctly incorporated into the database actually increases with some errorful edits because some of the edits are partially correct. In contrast, the loss of precision as entities become merged that should not be. In a traditional approach, these errorful must-link edits. The baseline approach that deterministically incorporates the errorful edits su...
Robustness to Errorful Human Edits

Our probabilistic reasoning

Traditional Overwrite

Epistemological (probabilistic)
Complete trust in users
Benefits of Probabilistic Reasoning about Streaming Evidence

Quality of original DB as new structured evidence arrives

Our probabilistic reasoning

Traditional Overwrite

Traditional KB

Epistemological database

Knowledge Base

F1 accuracy of original database mentions

Amount of evidence (no. of additional BibTeX mentions)
#3
Probabilistic Reasoning about Human Edits

Humans will want to correct DB, add to DB

Open Questions

- Edits: efficient forward chaining; robust to noise
- Streaming inputs: what to keep, toss, summarize
Relations with "Universal Schema"

Relation extraction

without labeled data

without pre-fixed schema
Styles of Relation Extraction

- Supervised

Schema

\{ advised, affiliated, authored, ... \}

Labeled Data

Jane Smith attends MIT.

Test Data

Ted Jones studies at Harvard.

Prediction

affiliated(Ted Jones, Harvard)
Styles of Relation Extraction

- Supervised
- Distantly Supervised

\{ advised, affiliated, authored, ... \}

affiliated(Jane Smith, MIT)

advised(Dan Klein, Slav Petrov)

...(...,...)

affiliated(Ted Jones, Harvard)

Jane Smith attends MIT

Jane Smith began studying math at MIT ...

Ted Jones studied at Harvard

Trained model of entities & relations
Styles of Relation Extraction

- Supervised
- Distantly Supervised
- Unsupervised (no schema) OpenIE

```
attends(Ted Jones, Harvard)
≠ affiliated
```
Styles of Relation Extraction

- Supervised
- Distantly Supervised
- Unsupervised (no schema) OpenIE
- Unsupervised (schema discovery) clustering

Relation #1
- affiliated
- attends
- studies at
- professor at
- employed by

Relation #2
- advised
- is the advisor of
- supervised
- chaired thesis of
- is the mentor of

Relation #3
- authored
- wrote
- published
- was co-author of
- ’s paper

Arbitrary
Hard to evaluate
Incomplete
Many boundary cases
Styles of Relation Extraction

- Supervised
- Distantly Supervised
- Unsupervised (no schema) OpenIE
- Unsupervised (schema discovery) clustering

Vanderwende to Hovy:
Where do the relation types come from?

Freebase:
No relation for “criticized”
Styles of Relation Extraction

• Supervised
• Distantly Supervised
• Unsupervised (no schema) OpenIE
• Unsupervised (schema discovery)
• Unsupervised (“universal schema”)

[Yao, Riedel, McCallum, AKBC 2012]
Prob DB of “Universal Schema”

• Schema = union of all inputs: NL & DBs
 - embrace diversity and ambiguity of original inputs
 - don’t try to force it into pre-defined boxes

• Learn implicature among entity-relations
 - “fill in” unobserved relations

[Yao, Riedel, McCallum, AKBC 2012]
Prob DB of “Universal Schema”

Text documents: relations from dependency parses

<table>
<thead>
<tr>
<th>president of</th>
<th>prime minister of</th>
<th>chancellor of</th>
<th>chief executive</th>
<th>leader of</th>
<th>head of state</th>
<th>headOf</th>
<th>Top Member</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obama, U.S.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Merkel, Germany</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S Harper Canada</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V Putin Russia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Larry Page Google</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V. Rometty IBM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tim Cook Apple</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E Grimson MIT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

350k+ rows

23k+ columns
Prob DB of “Universal Schema”

Text documents: relations from dependency parses

<table>
<thead>
<tr>
<th>president of</th>
<th>prime minister of</th>
<th>chancellor of</th>
<th>chief executive</th>
<th>leader of</th>
<th>head of state</th>
<th>headOf</th>
<th>Top Member</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obama, U.S.</td>
<td>Y</td>
<td></td>
<td>Y</td>
<td></td>
<td></td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Merkel, Germany</td>
<td></td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>S Harper Canada</td>
<td>Y</td>
<td></td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V Putin Russia</td>
<td>Y</td>
<td></td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Larry Page Google</td>
<td></td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>V. Rometty IBM</td>
<td>Y</td>
<td></td>
<td>Y</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tim Cook Apple</td>
<td></td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Y</td>
</tr>
<tr>
<td>E Grimson MIT</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

350k+ rows

Model & fill in matrix with Generalized Principle Components Analysis (ala Netflix)
Prob DB of “Universal Schema”

Text documents: relations from dependency parses

<table>
<thead>
<tr>
<th>president of</th>
<th>prime minister of</th>
<th>chancellor of</th>
<th>chief executive</th>
<th>leader of</th>
<th>head of state</th>
<th>headOf</th>
<th>Top Member</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obama, U.S.</td>
<td></td>
<td></td>
<td></td>
<td>Y</td>
<td></td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Merkel, Germany</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>S Harper, Canada</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>V Putin, Russia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Larry Page, Google</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>V. Rometty, IBM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Tim Cook, Apple</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>E Grimson, MIT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **350k+ rows**
- **23k+ columns**

Model & fill in matrix with Generalized Principle Components Analysis (ala NetFlix)
Successfully predicts
“Forbes criticized George Bush.”
Prob DB of “Universal Schema”

<table>
<thead>
<tr>
<th></th>
<th><subj<own>obj>percentage>prep>of>obj</th>
<th><subj<buy>obj>stake>prep>in>obj</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time, Inc Amer. Tel. and Comm.</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Volvo Scania A.B.</td>
<td></td>
<td>Y</td>
</tr>
<tr>
<td>Campeau Federated Dept Stores</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apple HP</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Successfully predicts

“Volvo owns percentage of Scania A.B.”
from “Volvo bought a stake in Scania A.B.”
Prob DB of “Universal Schema”

<table>
<thead>
<tr>
<th></th>
<th><subj><professor><prep><at></th>
<th><subj><historian><prep><at></th>
</tr>
</thead>
<tbody>
<tr>
<td>Kevin Boyle</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Ohio State</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R. Freeman</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Harvard</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Learns asymmetric entailment:

- PER historian at UNIV \rightarrow PER professor at UNIV
- but PER professor at UNIV \nrightarrow PER historian at UNIV
Experimental Results

- 20 years NYTimes
 - extract entity mentions, perform entity resolution
 - 350k entity pairs, 23k unique relation surface forms
- Freebase
 - 6k entity pairs resolved with NYTimes pairs
 - 116 relations

Relation Prediction

<table>
<thead>
<tr>
<th></th>
<th>w/out Freebase</th>
<th>with Freebase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precision</td>
<td>0.687</td>
<td>0.666</td>
</tr>
<tr>
<td>Recall</td>
<td>0.491</td>
<td>0.520</td>
</tr>
</tbody>
</table>
Prob DB of “Universal Schema”

• Summary
 - Embrace diversity and ambiguity of original inputs; don’t try to force it into pre-defined boxes.
 - Reason about entities & relations together; not an abstract relation-relation mapping.
 - User can query without understanding a limited schema; ask and we probably have a column for that.
 - Model to predict original expressions (well defined task); do not try to create models of semantic equivalence (illusive).
Prob DB of “Universal Schema”

• Summary
 - Embrace diversity and ambiguity of original inputs; don’t try to force it into pre-defined boxes.
 - Reason about entities & relations together; not an abstract relation-relation mapping.
 - User can query without understanding a limited schema; ask and we probably have a column for that.
 - Model to predict original expressions (well defined task); do not try to create models of semantic equivalence (illusive).

• Related Work
 - OpenIE [Etzioni…], but we also “fill in” unobserved relations
 - Clustering [Pantel; Yates; Yao], but we learn asymmetric
 - Rules between textual patterns [Schoenmackers et al. 2008], similar goals, but we avoid limited tree-width & batch-mode learning
#4

Relations with “Universal Schema”

Relation extraction without labeled data; without pre-fixed schema

Future Work

• Incorporate relations with different arities
• Integrate background knowledge
• Scale up further in both pairs and relations
Prob-Programming, its Integration with Prob-DB

Need way to easily specify models.
Schema Matching

\[P(Y \mid X) = \frac{1}{Z_X} \prod_{y_i \in Y} \psi_w(y_i, x_i) \prod_{y_i, y_j \in Y} \psi_b(y_{ij}, x_{ij}) \]

\[\psi(y_i, x_i) = \exp \left(\sum_k \lambda_{ik}(y_i, x_i) \right) \]

Coreference and Canonicalization
Really Hairy Models!

How to do

- parameter estimation
- inference

Coreference and Canonicalization
Really Hairy Models!

How to do

- parameter estimation
- inference
- software engineering
Probabilistic Programming Languages

• Make it easy to specify rich, complex models, using the full power of programming languages
 - data structures
 - control mechanisms
 - abstraction

• Inference implementation comes for free

Provides language to easily create new models
Our Approach to Probabilistic Programming

FACTORIE
http://factorie.cs.umass.edu

- **Object-oriented**: Variables, factors, inference & learning methods are objects,.. inheritance...
- **Imperative** definition of construction & operation
- **Embedded** in a general-purpose prog. language.
- **Scalable** to billions of variables and factors. Tightly integrates into DB back-end, providing PrDB.

Implemented in Scala

Replacement for MALLET
Prob-Programming & its Integration with Prob-DB

Need way to easily specify models. Tight coupling \rightarrow efficiency, scalability.

Open Questions

- Tools for prob programming, e.g. debuggers, profilers
- *Automatically* pick good inference for model/query, e.g. like DB query planners.
- Storing uncertainty. Samples? Particles? Marginals?
Text docs evidence

Human Edits evidence

Structured Data evidence

query

KB

Entity Extraction p(Entities, Relations)

Relation Extraction p(Entities, Relations)

Resolution (Coref) p(Entities, Relations)

Inference worker

Samples p("truth")

answer

"Epistemological Database"

Inference constantly bubbling in background...
Summary

• Epistemological DBs
 - “entities & relations inferred from evidence”

• Research ingredients
 - SampleRank
 - Hierarchical coref, parallel/distributed
 - Human edits
 - PrDB of “universal schema”
 - Probabilistic programming

BTW: I’m currently looking for a post-doc.
END
Ingredients of our Approach

1. Epistemological Database
 - evidence from outside; truth discovery inside

2. Human Edits as Evidence
 - joint interpretation of edits with text & tables

3. Never Ending Inference
 - effects of new evidence propagate always

4. Coreference as the Foundation
 - all semantics as similarity including to ontologies; no fixed ontology

5. Resource-bounded Information Gathering
 - decision-theoretic approach to focused KB filling

6. Smart parallelism
 - integrated with inference, asynchronous