Antennas and electromagnetic simulators for demanding wireless applications in complex environments

Dr. Vladimir V. Petrović

University of Belgrade, School of Electrical Engineering
Group for electromagnetics, antennas and microwaves
http://mtt.etf.bg.ac.rs, vp@etf.rs
Antennas for demanding applications (wireless sensors)

- Antennas need to be extremely versatile:
 - small, adaptive, low-cost, mobile, "smart"
- Those demands are almost always opposed to optimal conditions for antenna performance
- Antenna specifications are pushed close to fundamental physical limits
Antennas for WSN operate in unfavorable electromagnetic environments

- Inside or close to lossy media (human body, soil, water, ...)
- Geometrically complex and highly inhomogeneous media
- Stochastic (unpredictable) environments:
 - movement of the object/body, influence of surrounding bodies, walls, metallic objects..
Antenna design

- Modern and future antennas have to be designed by the synergy of
 - strong **fundamental knowledge** and
 - powerful **software tools**
Our software for antenna design

- **Wipl-D Microwave**: MTT simulator
- **Linpar, Matpar, Linres, Multlin**: multiconductor transmission lines (incl. in *Microwave Office*)
- **Wipl-D Pro**: 3D EM simulator and optimizer
- **Awas**: analysis of wire antennas and scatterers
- **E3D**: 3D electrostatic simulator
- **SchematicSolver**: symbolic system simulation
Antennas above and in real ground and layered media

- Accurate method
- Reduces memory demands and computing time more than 10x
- Extension of the method to layered media (in near future)
- Implemented in AWAS and WIPL-D Pro
- Application to WSN: sensors in ground, water, for agriculture, meteorology, geology...

- GENERAL SINGULARITY EXTRACTION TECHNIQUE FOR REFLECTED SOMMERFELD INTEGRALS,
Interaction between mobile handsets and the human head: simulation and measurements
Mobile handset radiation diagram
Absorbed power and radiation efficiency

\[\eta \text{ [\%]} \]

- \(\eta \text{ (theoretical)} \)
- \(\eta \text{ (measured)} \)
- \(e \text{ (theoretical)} \)

Distance [mm]
Partners:

Mobile communications Lab
NCSR “DEMOKRITOS”
Institute of Informatics & Telecommunications
www.iit.demokritos.gr

Electromagnetic Group
University of Belgrade
Faculty of Electrical Engineering
www.etf.bg.ac.yu

and several conference papers
Antennas on and inside human body for wireless body-area network (WBAN)

- WIPL-D Pro simulations

 - Chest: sim. dipole and L-dipole on the skin
 - Belt: symmetrical dipole close to the body
Antennas on and inside human body for wireless body-area network (WBAN)

two chest implanted sim. dipoles (about 0.5 cm deep)
Antennas on and inside human body for wireless body-area network (WBAN)

- WIPL-D Pro simulations

back: sim. dipole and L-dipole on the skin
Results for transfer between antennas (Propagation path Gain, S parameters)

- frequency $f = 2.45$ GHz, PG [dB] (<10 min, single core PC, 2.6 GHz)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>short L</th>
<th>long L</th>
<th>without body</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>-28</td>
<td>-28</td>
<td>-43 chest dipoles implant - skin, vert.</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>-83</td>
<td>-72</td>
<td>-87 chest dipoles implant - skin, horiz.</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>-71</td>
<td>-70</td>
<td>-49 chest dipole - belt</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>-63</td>
<td>-63</td>
<td>-30 chest dipole - back dipole</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>-80</td>
<td>-67</td>
<td>-48 chest dipole - back L</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>-73</td>
<td>-73</td>
<td>-87 implanted vert. dipole - belt</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>-42</td>
<td>-33</td>
<td>-66 implanted vert. dipole - chest L</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>-74</td>
<td>-74</td>
<td>-70 implanted vert. dipole - back dipole</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>-92</td>
<td>-93</td>
<td>-88 implanted vert. dipole - back L</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>-85</td>
<td>-85</td>
<td>-78 implanted horiz. dipole - belt</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>-60</td>
<td>-46</td>
<td>-65 implanted horiz. dipole - chest L</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>-116</td>
<td>-110</td>
<td>-118 implanted horiz. dipole - back dipole</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>-98</td>
<td>-81</td>
<td>-114 implanted horiz. dipole - back L</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>-81</td>
<td>-66</td>
<td>-66 belt - chest L</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>-71</td>
<td>-71</td>
<td>-40 belt - back dipole</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>-95</td>
<td>-82</td>
<td>-52 belt - back L</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>-95</td>
<td>-68</td>
<td>-67 chest L - back L</td>
</tr>
</tbody>
</table>
Simulation models can be much more realistic and detailed.

Models in WIPL-D Pro
Conclusion: Possible design procedure for WSN antennas

- Antenna design, placement and propagation
- Extensive numerical simulations and optimization
- Avoid accurate lab. measurements because:
 - they are complicated, time consuming, expensive, in unrealistic “ideal” environment
- Test prototypes in real conditions
- Iterate if necessary
- Perfect for SME (WIPL-D company is SME)
Thank you