Benchmarking Linked Open Data technology

SRbench: A Benchmark for Streaming RDF Storage Engines

Ying Zhang, Peter Boncz (CWI, Amsterdam)
What is Database Benchmarking?

Standard test to measure and understand how technology performs

- Dataset definition
 - at various scales (100GB, 300GB, 1TB, 3TB, etc)
 - mimicks a recognizable relevant usage scenario

- Database Queries
 - often between 10-100 queries, with parameters
 - + rules/programs that specify how these queries are posed

- Result Metrics
 - a number to understand the result
 - tps = “transactions/second”
 - $/QphH@size = “price per query per hour”

- Audit Rules
 - allow results to be checked by independent auditors
 - prevent/limit cheating
Why Benchmarking?

- make competing products comparable
- accelerate progress, make technology viable
Benchmarking LOD Technology

LOD = Linked Open Data

- web addressable data \rightarrow RDF data format (W3C)
- lots of useful data on the web ("LOD cloud")
Benchmarcking LOD Technology

LOD = Linked Open Data
- web addressable data ➔ RDF data format (W3C)
- lots of useful data on the web ("LOD cloud")

LOD technology (SPARQL) benchmarks:
- BSBM, DBpedia Benchmark, SIB
- SRbench ← topic of this talk
- New industry cooperation:
vendor cooperation to establish accepted RDF/Graph database benchmarks and benchmark results

* tentative/expected project
LDBC Goals

1. Create the LDBC Foundation of graph and RDF DB vendors

2. Equip de LDBC Foundation with a good initial set of benchmarks, and benchmark results

spin-off
Benchmarking
Linked Open Data technology

SRbench: A Benchmark for Streaming RDF Storage Engines

Ying Zhang, *Peter Boncz* (CWI, Amsterdam)
SRbench: **Streaming** RDF Benchmark

Traditional Database System vs.

Stream Database System

- Persistent Data
- Persistent Queries
 - "continuous queries"
 - "push" based query answering

- Data stream
- Stream of queries
- "pull" based query answering
Data Streams (1/4): Stock Market

Finance

26.90 -0.82 (-2.96%)

Pre-market: 26.71 -0.19 (-0.71%)

NASDAQ real-time data - Disclaimer

Company name	Price	Change	Chg %	M Cap	Valuation
FB Facebook Inc | 26.90 | -0.92 | -3.96% | 57.51B | 9.56
LVWD Livewire, Inc | 0.210 | 0.000 | 0.00% | 6.96M | 0.24
IMIN Immersive Tech(NDA) | 1.50 | 0.00 | 0.00% | 23.80M | 0.11
THWM TheWrap Inc | 0.0430 | 0.0000 | 0.00% | 2.44M | 0.01
CCLG CycleLogic, Inc | 0.0001 | 0.0000 | 0.00% | 10.00 | 0.00
LNKD LinkedIn Corporation | 91.69 | -0.42 | -0.46% | 9.41B | 9.47
TTGT TechTarget, Inc | 4.92 | -0.13 | -2.57% | 193.47M | 4.07
VLOG MergeLogic Corporation | 0.0032 | 0.0000 | 0.00% | 18.500 | 0.01
MRGN MergeLogic Corporation | 0.0035 | 0.0000 | 0.00% | 1.58M | 0.01
VLOG VillageEDEOS, Inc | 0.360 | 0.0000 | 0.00% | 139.455 | 0.01
YVNO Yahoo, Inc | 26.90 | -0.82 | -3.96% | 57.51B | 9.56

Volatility: High

30-day average volatility: 23.80%

Key stats and ratios

<table>
<thead>
<tr>
<th>Stat</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Net profit margin</td>
<td>19.99%</td>
</tr>
<tr>
<td>Operating margin</td>
<td>36.64%</td>
</tr>
<tr>
<td>EBITDA margin</td>
<td>55.02%</td>
</tr>
<tr>
<td>Return on assets</td>
<td>12.47%</td>
</tr>
<tr>
<td>Return on equity</td>
<td>12.22%</td>
</tr>
<tr>
<td>Employees</td>
<td>3,539</td>
</tr>
<tr>
<td>Carbon Disclosure Rating</td>
<td>-</td>
</tr>
</tbody>
</table>

Address
Data Streams (2/4): Social Chatter

- Detect breaking news
- Analyze Marketing campaigns
Data Streams (3/4): Car Traffic

- monitor positions and speeds of cars ➔ detect accidents, traffic jams
- Applications: better safety, improved logistics
Monitor health of elderly in their homes

Why?
- Difficult to reach locations
- Make health care more affordable

How?

Who are the users?

Figure 1. Basic telehealth system.
Streaming RDF data benefits:

- apply Linked Open Data (LOD) principles to streaming data
 - Link streaming data to data on the web (enrichment)
 - Publish data streams on the web
- support (simple) reasoning semantics in stream queries

⇒ Richer semantics than relational streaming database systems
SRbench: Streaming **RDF** Benchmark

Streaming RDF data **challenges:**

- Proper benchmark dataset
 - use real-world datasets from LOD

- No standard query language
 - natural language query definition +
 three implementations (SPARQLStream, CQELS, C-SPARQL)

- Limited systems support
 - evaluate on the strRS system (UPM)
SRbench: used Datasets

Use case: weather information application

LinkedSensorData

LinkedObservationData

Observation

om-owl:procedure

ResultData

Instant

om-owl:samplingTime

om-owl:result

MeasureData

TruthData

System

om-owl:hasLocatedNearRel

Point

om-owl:processLocation

LocatedNearRel

om-owl:hasLocation

DBpedia

Airport

owl:sameAs

GeoNames

Feature

om-owl:hasLocation

Ying Zhang, Peter Boncz – Benchmarking Linked Open Data Technology

June 7, 2012 @EDF Copenhagen
<table>
<thead>
<tr>
<th>Feature Type</th>
<th>Q1</th>
<th>Q2</th>
<th>Q3</th>
<th>Q4</th>
<th>Q5</th>
<th>Q6</th>
<th>Q7</th>
<th>Q8</th>
<th>Q9</th>
<th>Q10</th>
<th>Q11</th>
<th>Q12</th>
<th>Q13</th>
<th>Q14</th>
<th>Q15</th>
<th>Q16</th>
<th>Q17</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 patter matching</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A,F</td>
<td>A,F,U</td>
<td>A,F</td>
<td>A,F</td>
<td>A,F</td>
<td>A,F</td>
<td>A,F</td>
<td>A,F</td>
</tr>
<tr>
<td>3 query form</td>
<td></td>
</tr>
<tr>
<td>5 reasoning</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>6 CQL feature</td>
<td>T</td>
</tr>
<tr>
<td>7 data access</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 2. Addressed features per query. Operators are abbreviated in per row unique capital letters, defined as: 1. **And**, **Filter**, **Union**, **Optional**; 2. **Projection**, **Distinct**, **Limit**; 3. **Select**, **Construct**, **Ask**; 4. **Aggregate**, **Subquery**, **Negation**, **Expr in select**, assign**M**ent, **Functions&operators**, **Property path**; 5. **subClassOf**, **subPropertyOf**, **owl:sameAs**; 6. **Time-based window**, tu**P**le-based window, **I**stream, **D**stream, **R**stream; 7. **LinkedObservationData**, **LinkedSensorMetadata**, **GeoNames**, **Dbpedia**.
Summary

- the importance of
 - Database System Benchmarking
 - RDF Database System Benchmarking
 - Streaming RDF Database System Benchmarking

- SRbench
 - Developed in PlanetData (CWI, UPM)
 - First dedicated streaming RDF/SPARQL benchmark

- SRbench future work:
 - performance evaluation
 - results verification (not easy!)
Thank You!

Questions?

- Ying Zhang (zhang@cwi.nl)
- Peter Boncz (boncz@cwi.nl)