Big Data

- Driven by cheaper storage and computation
 - Cloud computing further enabling economies of scale
 - Open-source software lowers barrier of entry

- Societal and economical impact
 - Scientific breakthroughs will come from *data exploration*
 - Success in business dictated by the ability to quickly draw insights from data signals

- Big Data Analytics
 - Analytical workloads scale inversely with cost

- Major challenge: Information marketplaces
 - Data as a resource, analytics as a product
 - An “AppStore” for data
The DOPA Vision

- Data Pools as collections of diverse data sets
- Example data pools
 - Evolving history of the Web
 - Financial and statistical data
- Data identification
 - By assigning unique IDs to objects
 - Enables data linkage
- Data Analytics
 - Integration and analytics on diverse data sources
 - Using a common framework and language
Some Scenarios

- **Sentiment and market analysis**
 - An SME producing consumer goods can analyze blogs and social network streams, and link them with customer demographics to perform sentiment analysis and market research.

- **Green houses**
 - A home buyer can find out the energy consumption and distribution over time in houses in a particular area by linking and analyzing energy with demographic data.

- **Traffic analysis, transportation and construction planning**
 - Linking weather, traffic, road data
“Big Data” refers to different applications as well as more data
- Beyond traditional DW queries

Open-source in data management
- Enabled primarily by Hadoop popularity
- Changed research landscape

New systems are rethinking the complete data management stack at a massively parallel scale
- As systems mature, need to tackle hard and novel problems
Collaborative Research Project
- 3 Universities, 5 research groups in the Berlin area

Infrastructure for Big Data Analytics

Bridge relational DBMSs and MapReduce worlds
- Intersection of functional languages and data parallelism
- Re-architecting data management systems for massive parallelism

Open-source research platform (Apache)

Used by a variety of Universities and research institutes
Stratosphere Architecture

```
$res =
    filter $e in $emp
    where
    $e.income > 30000;
```
Stratosphere Use Cases

10TB

950km, 2km resolution

1100km, 2km resolution

3 months, 1h resolution

Linking and Analyzing Big Data with Stratosphere
The Meteor Query Language

- Stratosphere declarative front-end inspired by the IBM Jaql language
- Extensible and flexible
 - Easy to add libraries, e.g., for data linkage, cleansing, mining
 - Easy to integrate in language syntax
- Provides operators for Information Extraction and Data Linkage
- Time as a first-class concept
The Nephele Execution Engine

- Executes Nephele schedules
 - DAGs of already parallelized operator instances
 - Parallelization already done by PACT optimizer

- Design decisions
 - Designed to run on top of an IaaS cloud
 - Predictable performance
 - Scalability to 1000+ nodes with flexible fault-tolerance

- Permits network, in-memory (both pipelined), file (materialization) channels
The PACT Programming Model

- Internal Stratosphere programming model
 - Also exposed to the programmer for advanced functionality
- Dataflow, side-effect free programming model enabling massive parallelism
- Centered around the concept of second-order functions
 - Generalization of MapReduce
Knowledge of PACT signature permits **automatic optimization** ala Relational DBMSs

- Emulates different hand-crafted MapReduce implementations

- Enables **orders of magnitude** faster programs

- Frees programmer from thinking about execution
Linking and Analyzing Big Data with Stratosphere

Ongoing Research

1. UDF Map
2. UDF Reduce
3. UDF Match
4. Sink

Src 1

Src 2

O

Reduce (on tid)
↑ (pid=tid, r=∑k)↑

fifo

Match (on pid)
↑ (tid, k=r*p)↑

Join P and A

Sum up partial ranks

buildHT (pid)

probeHT (pid)

CACHE

broadcast

part./sort (tid)

fifo

(pid, tid, p)

(pid, r)

I

(cache)
Summary

■ DOPA
 □ Bootstrapping the information economy by providing information marketplaces and related business models
 □ Brings together heterogeneous data pools
 □ Enables easy linkage and analytics across data pools via a flexible programming language

■ Stratosphere
 □ Technical infrastructure for scalable analytics
 □ Pushes the MapReduce paradigm forward
 □ Focal point of several research initiatives across Europe and the world
Acknowledgments

- FP7 STREP (DOPA), DFG FOR, EIT (Stratosphere)
- DOPA partners
 - TU Berlin, IMR, DataMarket, OKKAM, Vico, ami
- Stratosphere partners
 - TU Berlin, HU Berlin, HPI
- EIT partners
Thank you!

www.stratosphere.eu
@stratosphere_eu
kostas.tzoumas@tu-berlin.de