Solving the Facility Location Problem Using Message Passing

Nevena Lazic, Brendan Frey, Parham Aarabi
University of Toronto
Facility Location

Facility Location (FL) Problem:
Open a subset of facilities & connect customers to one facility each at minimal cost
FL in Machine Learning

- Exemplar-based clustering
 - $C = F$

- Multiple model selection [Li`07]
 - F: models
 - C: data

- Many practical problems…
 - wireless sensor networks
 - computational biology
 - computer vision
Outline

- Approach to FL:
 - Approximate MAP inference in graphical model
 - Max-product linear programming (MPLP) [Globerson & Jaakkola ’08]

- MPLP fixed points
 - Unique solution: guaranteed optimal
 - Non-unique solution: unknown how to set some variables

- Today
 - New greedy algorithm for decoding variables for FL
 - In some cases, does not coincide with any MPLP variable assignment
 - Optimality guarantees (3-approximation)
 - Empirically better solutions than typical MPLP solutions
\[\min_x \sum_{ij} c_{ij} x_{ij} + \sum_j f_j \max_i x_{ij} \]

s.t. \[\sum_j x_{ij} = 1 \]

\(x_{ij} \): customer \(i \) connected to facility \(j \)

1-of-N binary encoding

\(c_{ij} \): connection costs

\(f_j \): facility costs
Background: MPLP

MAP: \[\min_x \sum_c \theta_c(x_c) \]

MAP-LP: \[\min_{\mu} \sum_c \sum_{x_c} \mu_c(x_c) \theta_c(x_c) \]

Lower bound on MAP.

<table>
<thead>
<tr>
<th>x_1x_2</th>
<th>$\mu_a(x_1,x_2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>0.25</td>
</tr>
<tr>
<td>01</td>
<td>0.25</td>
</tr>
<tr>
<td>10</td>
<td>0.25</td>
</tr>
<tr>
<td>11</td>
<td>0.25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>x_2x_3</th>
<th>$\mu_b(x_2,x_3)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>0</td>
</tr>
<tr>
<td>01</td>
<td>0.5</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>0.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>x_2</th>
<th>$\mu_2(x_2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>1</td>
<td>0.5</td>
</tr>
</tbody>
</table>
Background: MPLP

MAP: \(\min_x \sum_c \theta_c(x_c) \)

MAP-LP: \(\min_\mu \sum_c \sum_{x_c} \mu_c(x_c) \theta_c(x_c) \)

Lower bound on MAP.

\(x \equiv \text{integral } \mu. \)

\(x = 011 \)
Background: MPLP

Dual LP: sum of beliefs
\[\sum_i \max_{x_i} b_i(x_i) \]
where \(b_i(x_i) = \sum_c m_{ci}(x_i) \)

MPLP:
- Iteratively update \(m_{ci}(x_i) \)
- Compute beliefs: \(b_i(x_i) = \sum_c m_{ci}(x_i) \)
- Assign variables: \(x_i^* = \arg \max_{x_i} b_i(x_i) \)
MPLP fixed points

Two cases:

- x^* unique - optimal solution
- $b_i(1)=b_i(0)$ for some variables
 - Can find optimal in special cases (e.g. binary x, pairwise submodular θ)
 - Optimal unknown if NP-hard

$x_i^* = \arg \max_{x_i} b_i(x_i)$
Complementary slackness

- Our approach: **complementary slackness conditions**
 - Always hold for a pair of LP solutions \((\mu^*, \beta^*)\) that are **primal** and **dual** optimal

- MPLP: \(x^* = \arg \max_x b(x)\)
 - \(\mu^* = x^*\) satisfies a **subset** of c.s. conditions for MAP LP
 - Greedily try satisfy **all** c.s. conditions & achieve the LP lower bound
FL: complementary slackness

Solution support graph $G=(C,F,E)$:

MPLP fixed point:
edges $b_{ij} \geq 0$

Integral solution x:
edges $x_{ij} = 1$

$b_{ij} \equiv b_{ij}(1) - b_{ij}(0)$
Complementary slackness for x:

1. Customers: connected via an -- edge
2. Facilities: all or no -- edges

Diagram:

- $b_{ij} \geq 0$
- $x_{ij} = 1$
FL: complementary slackness

Complementary slackness for x:
1. Customers: connected via an edge
2. Facilities: all or no edges

1 violated.
Complementary slackness for x:
1. Customers: connected via an -- edge
2. Facilities: all or no -- edges

2 violated.
Complementary slackness for x:
1. Customers: connected via an -- edge
2. Facilities: all or no -- edges

LPr tight – can satisfy both 1 and 2.
FL: complementary slackness

Complementary slackness for \mathbf{x}:

1. Customers: connected via an -- edge
2. Facilities: all or no -- edges

LPr tight – can satisfy both 1 and 2.
Decoding: belief maximization

\[x_{ij}^* = \arg \max_{x_{ij}} b_{ij}(x_{ij}) \quad - \text{always satisfies c.s. 1} \]

- pick an edge for each customer
Decoding: belief maximization

\[x_{ij}^* = \arg \max_{x_{ij}} b_{ij}(x_{ij}) \]
- always satisfies c.s. 1
- pick an edge for each customer

One possible solution – all facilities are open!
Decoding: greedy algorithm

Our approach:
- always satisfy c.s. 2
- open facilities in a greedy order
Decoding: greedy algorithm

Our approach:
- always satisfy c.s. 2
- open facilities in a greedy order

1 violated - x_{ij} does not maximize its belief
FL Approximability

ρ-approximation algorithm: guarantees $E(x^*) \leq \rho E(x^{OPT})$
- ρ is $O(\ln|C|)$ in general
- ρ is constant for *metric* FL

$c_{ij} \leq c_{ik} + c_{lk} + c_{lj}$
3-approximation for metric FL

- Integral ≤ 3 Dual
- Proof: triangle inequality, greedy order, fixed point

- Integral = Dual
- Proof: complementary slackness

Integral ≤ 3 Dual ≤ 3 Optimal
Experimental evaluation

- Metric FL, $C=F$
 - uniformly sampled 2D points
 - c_{ij}: Euclidean distance
 - f_j: equal for all j

- Algorithms
 - MPLP + Beliefs
 - MPLP + Greedy

- Error: % above LP lower bound
Experimental evaluation

- Metric FL, $C=F$

- Standard max-product: Affinity Propagation (AP)

- Algorithms
 - AP + Beliefs
 - AP + Greedy
 - MPLP + Beliefs
 - MPLP + Greedy
Experimental evaluation

- Non-metric ORLIB benchmarks
- Algorithms
 - MP + Beliefs
 - MP + Greedy
 - MPLP + Beliefs
 - MPLP + Greedy
- Error: % above optimal

| Name | |C| | |F| | |Opt.|
|-------|---|---|---|---|---|
| c7* | 50 | 16 | 4/4 |
| c10* | 50 | 25 | 4/4 |
| c13* | 50 | 50 | 4/4 |
| a,b,c | 1000 | 100 | 1/3 |
Summary and conclusions

- Facility Location
 - Graphical model + MPLP + Greedy decoding
 - 3-approximation for metric FL
 - Improved empirical results over maximizing beliefs

- Questions?