Coherent Inference
on Optimal Play in Game Trees

inference in exponentially big trees, in linear time

Philipp Hennig, David Stern, Thore Graepel

AISTATS 2010
Chia Laguna, Sardinia
the main idea:

Games evolve smoothly. This insight allows approximate inference on optimal play, using data from nonoptimal play.

You might also like this talk if you are interested in . . .

- Reinforcement Learning
- Probabilistic Optimization
- Graphical Models
- Bandit Problems
- Tree Search
- Approximate Inference
real game trees are very big (Go has \(\sim 10^{400} \) nodes)
Exact Game Tree Search is Hard

games are AND/OR Trees

- real game trees are very big (Go has $\sim 10^{400}$ nodes)
- a min/max (AND/OR) optimization problem
- solving exact is $O(b^d)$ (with good heuristics, $O(b^{d/2})$ at best)
real game trees are very big (Go has $\sim 10^{400}$ nodes)

• a min/max (AND/OR) optimization problem
• solving exact is $O(b^d)$ (with good heuristics, $O(b^{d/2})$ at best)
- real game trees are very big (Go has $\sim 10^{400}$ nodes)
- a min/max (AND/OR) optimization problem
- solving exact is $O(b^d)$ (with good heuristics, $O(b^{d/2})$ at best)
real game trees are very big (Go has $\sim 10^{400}$ nodes)
a min/max (AND/OR) optimization problem
solving exact is $\mathcal{O}(b^d)$ (with good heuristics, $\mathcal{O}(b^{d/2})$ at best)
real game trees are very big (Go has $\sim 10^{400}$ nodes)

- a min/max (AND/OR) optimization problem

- solving exact is $\mathcal{O}(b^d)$ (with good heuristics, $\mathcal{O}(b^{d/2})$ at best)
State of the Art: Monte Carlo Tree Search
stochastically explore tree, focus on promising parts

- assymmetric part of tree stored below the root
- repeated descents through the stored part, roll-outs at end
- performance depends crucially on descent policy
- one such policy: Upper Confidence Bound for Trees (UCT) [Kocsis and Szepesvári, 2006]
- works surprisingly well on Go [Gelly & Silver, 2008]
State of the Art: Monte Carlo Tree Search
stochastically explore tree, focus on promising parts

- asymmetric part of tree stored below the root
- repeated descents through the stored part, roll-outs at end
- performance depends crucially on descent policy
- one such policy: Upper Confidence Bound for Trees (UCT) [Kocsis and Szepesvári, 2006]
- works surprisingly well on Go [Gelly & Silver, 2008]
State of the Art: Monte Carlo Tree Search

stochastically explore tree, focus on promising parts

- asymmetric part of tree stored below the root
- repeated descents through the stored part, roll-outs at end
- performance depends crucially on descent policy
- one such policy: Upper Confidence Bound for Trees (UCT) [Kocsis and Szepesvári, 2006]
- works surprisingly well on Go [Gelly & Silver, 2008]
State of the Art: Monte Carlo Tree Search
stochastically explore tree, focus on promising parts

- asymmetric part of tree stored below the root
- repeated descents through the stored part, roll-outs at end
- performance depends crucially on descent policy
- one such policy: Upper Confidence Bound for Trees (UCT) [Kocsis and Szepesvári, 2006]
- works surprisingly well on Go [Gelly & Silver, 2008]
State of the Art: Monte Carlo Tree Search
stochastically explore tree, focus on promising parts

- assymetric part of tree stored below the root
- repeated descents through the stored part, roll-outs at end
- performance depends crucially on descent policy
- one such policy: Upper Confidence Bound for Trees (UCT) [Kocsis and Szepesvári, 2006]
- works surprisingly well on Go [Gelly & Silver, 2008]
State of the Art: Monte Carlo Tree Search
stochastically explore tree, focus on promising parts

- asymmetric part of tree stored below the root
- repeated descents through the stored part, roll-outs at end
- performance depends crucially on descent policy
- one such policy: Upper Confidence Bound for Trees (UCT) [Kocsis and Szepesvári, 2006]
- works surprisingly well on Go [Gelly & Silver, 2008]
State of the Art: Monte Carlo Tree Search
stochastically explore tree, focus on promising parts

- asymmetrical part of tree stored below the root
- repeated descents through the stored part, roll-outs at end
- performance depends crucially on descent policy
- one such policy: Upper Confidence Bound for Trees (UCT) [Kocsis and Szepesvári, 2006]
- works surprisingly well on Go [Gelly & Silver, 2008]
- why?
Games Have Structure
wins and losses are clustered among leaves

- otherwise MC tree search *could* not work [Pearl, 1985]
- implies a latent score g for non-terminal nodes
- each roll-out contains information about entire tree
- vanilla MC tree search passes information upwards only
Games Have Structure
wins and losses are clustered among leaves

- otherwise MC tree search *could* not work [Pearl, 1985]
- implies a latent score g for non-terminal nodes
- each roll-out contains information about entire tree
- vanilla MC tree search passes information upwards only
Building a Bayesian Tree Searcher

rest of this talk

- define generative model for latent scores g
- establish model match with Go
- approximate inference on g
- approximate inference on optimal values v
let $G = \{g_i\}$ the values under the roll-out policy

$$p(g_0) = \mathcal{N}(g_0; \mu_0, \sigma_0^2)$$
$$p(g_i | g_{\text{parent}(i)}) = \mathcal{N}(g_i; g_{\text{parent}(i)}, 1)$$

let $V = \{v_i\}$ the values under optimal play

$$v_i = \begin{cases}
 g_i & \text{if } i \text{ is terminal} \\
 \max_{\text{children}(i)} \{v_c\} & \text{if MAX plays at } i \\
 \min_{\text{children}(i)} \{v_c\} & \text{if MIN plays at } i
\end{cases}$$
Model Matches Well With Go

empirical distributions of g values relative parents
How to Obtain Marginals Over Optimal Values

generative model of optimal values
How to Obtain Marginals Over Optimal Values

Inference separates into *inductive* and *deductive* parts.

\[
p(g_i | g_{\text{parent}(i)}) = \mathcal{N}(g_i; g_{\text{parent}(i)}, 1)
\]

\[
p(o_i | g_i, \ell_i) = \mathcal{N}(o_i; g_i, \ell_i)
\]

\[
v_i = g_i + \Delta_i(\ell_i)
\]

Inference separates into *deductive* and *inductive* parts.
Inductive Inference by Approximate Density Evolution

Expectation Propagation yields recursive relationship on Δ

$$\Delta_i(\ell_i, b) = \begin{cases}
0 & \text{if } i \text{ terminal} \\
\max_{\text{children } j(i)} \{\Delta_j(\ell_i - 1, b) + \xi_j\} & \text{if } i \mod 2 = 0 \\
\min_{\text{children } j(i)} \{\Delta_j(\ell_i - 1, b) + \xi_j\} & \text{if } i \mod 2 = 1
\end{cases}$$

where $\xi_j \sim \mathcal{N}(0, 1)$
How to Obtain Marginals Over Optimal Values

factor graph representation
How to Obtain Marginals Over Optimal Values
replace unobserved parts of the tree with a probabilistic model
an instance of Bayesian off-policy reinforcement learning

- can use any policy for stored tree (e.g. UCT) and roll-outs
- inference separates into deductive and inductive parts
- can evaluate belief over optimal value of any node in the tree
- Expectation Propagation keeps inference tractable
- marginals are coherent throughout the tree (i.e. can be used to train global evaluation function)
Conclusion

- game trees have structure
- this allows (approximate) inference on the solution of the min/max optimization problem
- see paper #113 for details