The YouTube Social Network

Mirjam Wattenhofer¹, Roger Wattenhofer², Zack Zhu²
Google Zurich¹, ETH Zurich²

Sixth International AAAI Conference on Weblogs and Social Media
Dublin, June 7th, 2012
In 2011, >1 trillion views (140/person on Earth)

>60 hours of video is uploaded every minute

>4 billion videos are viewed everyday

...thousands of full-length movies

Every week, 100 million people take social actions on YouTube

Millions of subscriptions happen each day…

>800 million unique visitors on YouTube every month

>50% of videos have been rated-commented on

Source: www.youtube.com/t/press_statistics
In 2011, >1 trillion views (140/person on Earth)

>60 hours of video is uploaded every minute

>4 billion videos are viewed everyday

…thousands of full-length movies

Every week, 100 million people take social actions on YouTube

Millions of subscriptions happen each day…

>800 million unique visitors on YouTube every month

>50% of videos have been rated/commented on

Source: www.youtube.com/t/press_statistics
In 2011, >1 trillion views (140/person on Earth)

>60 hours of video is uploaded every minute

>4 billion videos are viewed everyday

...thousands of full-length movies

Every week, 100 million people take social actions on YouTube

Millions of subscriptions happen each day…

>800 million unique visitors on YouTube every month

>50% of videos have been rated/commented on

Source: www.youtube.com/t/press_statistics
In 2011, >1 trillion views (140/person on Earth)

>60 hours of video is uploaded every minute

>4 billion videos are viewed everyday

…thousands of full-length movies

Every week, 100 million people take social actions on YouTube

Millions of subscriptions happen each day…

>800 million unique visitors on YouTube every month

>50% of videos have been rated/commented on

Source: www.youtube.com/t/press_statistics
Questions…

1. Are YouTube users behaving similarly to users of traditional social networks?
 - How do users interact and connect?

2. How are members of the YouTube Partner Program selected?
 - What is the interplay between content popularity and social popularity?
 - Which measures of popularity are indicative of potential partners?
Measurements

Nodes -> \(\sim 10^8 \)
Edges -> \(\sim 10^9 \)

A subscribes to B

A: Subscriber
B: Publisher
Measurements

Nodes -> \(\sim 10^8\)
Edges -> \(\sim 10^9\)

X commented on Y, c times
We measure the complete subscription graph, comment graph and video metrics aggregated to the user level. This snapshot was compiled in August 2011.
Connecting & Interacting

Given user μ, we compare sets

$C_\mu \in \{c_1, c_2, \ldots, c_n\}$

$S_\mu \in \{s_1, s_2, \ldots, s_n\}$

for the overlap proportion

$\rho_\mu = \frac{S_\mu \cap C_\mu}{S_\mu \cup C_\mu}$
Connecting & Interacting

Given user μ, we compare sets

$$C_\mu \in \{c_1, c_2, ..., c_n\}$$

$$S_\mu \in \{s_1, s_2, ..., s_n\}$$

for the overlap proportion

$$\rho_\mu = \frac{S_\mu \cap C_\mu}{S_\mu \cup C_\mu}$$
Connecting & Interacting

Given user μ, we compare sets

\[C_\mu \in \{c_1, c_2, \ldots, c_n\} \]
\[S_\mu \in \{s_1, s_2, \ldots, s_n\} \]

for the overlap proportion

\[\rho_\mu = \frac{S_\mu \cap C_\mu}{S_\mu \cup C_\mu} \]

On average: $\bar{\rho} = 9.6\%$ (s.d. 1.9%)
Connecting & Interacting

Given user μ, we compare sets

$C_\mu \in \{c_1, c_2, \ldots, c_n\}$
$S_\mu \in \{s_1, s_2, \ldots, s_n\}$

for the overlap proportion

$\rho_\mu = \frac{S_\mu \cap C_\mu}{S_\mu \cup C_\mu}$

On average: $\bar{\rho} = 9.6\%$ (s.d. 1.9%)

$$\frac{1}{n} \sum_{\mu \in N} \frac{S_\mu \cap C_\mu}{C_\mu} = 16.46\%$$
Connecting & Interacting

Given user μ, we compare sets

$$C_\mu \in \{c_1, c_2, \ldots, c_n\}$$
$$S_\mu \in \{s_1, s_2, \ldots, s_n\}$$

for the overlap proportion

$$\rho_\mu = \frac{S_\mu \cap C_\mu}{S_\mu \cup C_\mu}$$

On average: $\bar{\rho} = 9.6\%$ (s.d. 1.9%)

$$\frac{1}{n} \sum_{\mu \in N} \frac{S_\mu \cap C_\mu}{C_\mu} = 16.46\%$$
$$\frac{1}{n} \sum_{\mu \in N} \frac{S_\mu \cap C_\mu}{S_\mu} = 18.1\%$$
Connecting & Interacting

Given user μ, we compare sets

$$C_\mu \in \{c_1, c_2, \ldots, c_n\}$$
$$S_\mu \in \{s_1, s_2, \ldots, s_n\}$$

for the overlap proportion

$$\rho_\mu = \frac{S_\mu \cap C_\mu}{S_\mu \cup C_\mu}$$

On average: $\bar{\rho} = 9.6\%$ (s.d. 1.9%)

$$\frac{1}{n} \sum_{\mu \in \mathcal{N}} \frac{S_\mu \cap C_\mu}{C_\mu} = 16.46\%$$
$$\frac{1}{n} \sum_{\mu \in \mathcal{N}} \frac{S_\mu \cap C_\mu}{S_\mu} = 18.1\%$$

Only a small portion of a user’s subscribers are also commenters and vice-versa. The set of commenters and subscribers are **highly disparate populations**
Assortative Linking

Who I Subscribe To (All Users)

The YouTube Social Network
Assortative Linking
YouTube users **link disassortatively**, such that most subscribe to power-users.
Reciprocity

• Measurements of Flickr and Yahoo! illustrate the presence of reciprocal linking amongst users [Kumar et. al. 2006, Cha et. al. 2009]

• We measure % of users with ≥ 1 reciprocal link:

 ~75% have 0 reciprocal link
Reciprocity

- Measurements of *flickr* and *Yahoo! 360°* illustrate the presence of reciprocal linking amongst users [Kumar et. al. 2006, Cha et. al. 2009]

- We measure % of users with \(\geq 1 \) reciprocal link:

Approximately \(\frac{3}{4} \) of the users have no reciprocal links, indicating a **lack of reciprocity** on the YouTube subscription graph.
Reciprocity

- Measurements of *flickr* and *Yahoo! 360°* illustrate the presence of reciprocal linking amongst users [Kumar et. al. 2006, Cha et. al. 2009]

- We measure % of users with \geq 1 reciprocal link:

 - $\sim 75\%$ have 0 reciprocal link
 - 77.9% pairs are not linked reciprocally [Kwak. et. al. 2010]

Approximately $\frac{3}{4}$ of the users have no reciprocal links, indicating a lack of reciprocity on the YouTube subscription graph.
Homophily

- Established by [McPherson et. al., 2001]
- Measure homophily via upload category
 - Hard assignment of all videos to 1 of 12 categories
 - Capture a *mode* upload category for each user
 - Use it as a proxy measure for user interest
- Compare whether a pair of linked users have the same *mode* category
Homophily

Only **12.49%** of users are more connected with the same upload category on the subscription graph

- Established by [McPherson et. al., 2001]
- Measure homophily via upload category
 - Hard assignment of all videos to 1 of 12 categories
 - Capture a **mode** upload category for each user
 - Use it as a proxy measure for user interest
- Compare whether a pair of linked users have the same mode category
By analyzing mode upload category, we observe a **lack of homophily** on both the subscription and comment graphs. Concurs with [Kwak et. al., 2010]'s study of Twitter.

Only **12.49%** of users are more connected with the same upload category on the subscription graph.

- Established by [McPherson et. al., 2001]
- Measure homophily via upload category
 - Hard assignment of all videos to 1 of 12 categories
 - Capture a **mode** upload category for each user
 - Use it as a proxy measure for user interest
- Compare whether a pair of linked users have the same mode category
Social on YouTube stems from a relationship of information generation and consumption as opposed to real-world social relationships.
YouTube & Traditional Social Networks

Popularity & YouTube Partners
The YouTube Social Network
Medians and minimums of content popularity

Comment graph In-Degree
Comment graph PageRank
Subscription graph In-Degree
Subscription graph PageRank
Maximums of content popularity

Comment graph In-Degree

Comment graph PageRank

Subscription graph In-Degree

Subscription graph PageRank

Maximums of content popularity
YouTube Partners

• YouTube Partner Program (YPP)\(^1\):
 – Created in 2007, top content contributors are selected to share ad revenue
 – Payout in the millions/year, top partners can make more than 100k/year
 – 30,000 partners from 27 countries

• Classify users as potential YPP members to aid the filtering process
 – Leverage subscription graph, comment graph, and content metrics as signals
 – Large-scale spotting problem
 – Focus on recall as opposed to precision

• Supervised-learning via Random Forest [Liaw and Wiener, 2002]
 – Three types of partners, formed as three independent binary classification problem
 – Feature selection via Gini entropy reduction

\(^1\)www.youtube.com/t/press_statistics
10-fold C.V. on imbalanced data

<table>
<thead>
<tr>
<th>P1 Partners</th>
<th>Mean AUC</th>
<th>Std. Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1 Partners</td>
<td>0.968</td>
<td>0.0212</td>
</tr>
<tr>
<td>P2 Partner</td>
<td>0.958</td>
<td>0.0323</td>
</tr>
<tr>
<td>P3 Partners</td>
<td>0.943</td>
<td>0.0413</td>
</tr>
</tbody>
</table>
Entropy Reduction of Various Features

YPP-P1
YPP-P2
YPP-P3
The YouTube Social Network

Social popularity dominates in all three classes
Entropy Reduction of Various Features

Max. Raters

Max. Favs

Content Popularity matters for P1…

The YouTube Social Network
The # of Uploads does not matter.

Entropy Reduction of Various Features

- YPP-P1
- YPP-P2
- YPP-P3

The YouTube Social Network
Take-Aways

• We found a significant **dichotomy** of social interaction and linking

• The YouTube social network **differs** from marked trait of traditional social networks - social relationships are driven by **information relationships**

• Social popularity is more in line with **top** content popularity

• **Social popularity** dominates the selection of YouTube Partners
Thanks!

Questions?

Zack Zhu

Wearable Computing Lab, ETH Zurich
zack.zhu@ife.ee.ethz.ch
http://www.ife.ee.ethz.ch/people/zazhu