Distributed Indexing for Semantic Search

Peter Mika
Researcher, Data Architect
Yahoo! Research
MapReduce

- MapReduce programming model
 - Map: convert input into (k,v) pairs, apply some transformation
 - Reduce: collect all values for the same key: (k, \{v1,v2...\}), apply some computation, output result

- Parallel computation and distributed data
 - Map and Reduce tasks run in parallel
 - Each mapper works on a part of the input
 - Each reducer works on a subset of the keys
 - Reduce starts only after all Mappers are finished
 - Distributed file system

- Open source implementation
 - Hadoop (Java)
Text indexing using MapReduce

• Information Retrieval relies on inverted indices of text
 – A map from terms to documents which contain that term
 – Queries are resolved by looking up each query term and merging the resulting document sets

• MapReduce is the perfect model for building inverted indices
 – Map creates (term, \{doc1\}) pairs
 – Reduce collects all docs for the same term: (term, \{doc1, doc2\ldots\})
 – Skew is a known issue: reducers have uneven load
 – Sub-indices are merged afterwards (inexpensive)

• Implementations for building Lucene indices using Hadoop
 – Katta project
RDF indexing using MapReduce

- RDF data has a much richer structure
 - More expressive queries require more sophisticated indices

- Differences in semantic search literature as to what expressivity is required
 - Current, web search keyword queries have very limited structure (see Pound et al. WWW2010)
 - End users are unlikely to type in SPARQL queries

- Queries on property values are required in almost all cases
 - `foaf_name:Peter foaf_name:Mika`
 - `foaf_name:”Peter Mika”`
 - `foaf_name:”Peter Mika” foaf_age:32`
Post-fixing

- This can be achieved without any special index structure by "post-fixing"
 - Instead of the term Peter index the term Peter#foaf_name
 - Prefix queries are needed to search only for Peter

✓ There is less skew

✗ Dictionary is number of unique terms per property
 - It works well when the number of properties are small
 • Example: NER indexing with a small number of types
 - RDF has large number of properties: dictionary explodes
 • the_name, the_title, the_address, the_org,
Horizontal indexing

- Two fields (indices): one for terms, one for properties
- For each term, store the property on the same position in the property index
 - Positions are required even without phrase queries
- Query engine needs to support the alignment operator
 - E.g. MG4J: "Peter^property:foaf_name Mika^property:foaf:name"

✓ Dictionary is number of unique terms + number of properties
✗ Occurrences is number of tokens * 2
✗ As much skew as in normal text indexing

<table>
<thead>
<tr>
<th>Field</th>
<th>p1</th>
<th>p2</th>
<th>p3</th>
<th>p4</th>
</tr>
</thead>
<tbody>
<tr>
<td>token</td>
<td>peter</td>
<td>mika</td>
<td>32</td>
<td>barceloina</td>
</tr>
<tr>
<td>property</td>
<td>foaf:name</td>
<td>foaf:name</td>
<td>foaf:age</td>
<td>vcard:location</td>
</tr>
</tbody>
</table>

Table 1: Horizontal indexing of RDF data
Vertical indexing

• One field (index) per property
• Positions are not required
 – But useful for phrase queries
• Query engine needs to support fields
 – E.g. MG4J: “foaf_name:Peter foaf_name:Mika”

✓ Dictionary is number of unique terms
✓ Occurrences is number of tokens
✓ Less skew

✗ Number of fields is a problem for merging, query performance

<table>
<thead>
<tr>
<th>Field</th>
<th>p1</th>
<th>p2</th>
<th>p3</th>
<th>p4</th>
</tr>
</thead>
<tbody>
<tr>
<td>foaf:name</td>
<td>peter</td>
<td>mika</td>
<td></td>
<td></td>
</tr>
<tr>
<td>foaf:age</td>
<td>32</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vcard:location</td>
<td>barcelona</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Implementation

• Reality is more complex than the textbooks…
 – Hashed subject URIs using MG4J’s Minimal Perfect Hash
 • hash function occupies only 307MB
 • Fits in memory for now, only required for map
 – Implemented fields, positions: keys are (field, term) pairs, values are (docid, position) pairs
 – For each term, documents need to be indexed in increasing order of docid
 • Secondary sort by making value part of the key
 • Increased amount of data
Implementation

• Document frequency needs to be known when starting to write out the posting list
 – Introduced dummy occurrences, one for each document
 – Set docid to -1 to make sure dummy occurrences come first
• Memory problems with unbalanced executions (too many documents for a single term)
• Memory problems with large number of indices (index caching)
• Trade-offs between how much memory is left for our job vs. memory for the system itself
Evaluation

• BTC 2009 dataset (as used in Entity Search Track)
 – 114,530,196 URIs
 – 273,922,563 triples
 – 2,931,625,024 / 1,438,318,071 occurrences (horiz/vert)

• We index subject URIs, not document URLs
 – Collected triples by subject URI using Hadoop

• Only datatype-properties indexed

• Pre-selected 300 datatype-properties for vertical indexing
 – Problem: frequent but “useless” properties such as foaf:mbox_sha1sum or image:height
 – TODO: likelihood-to-match

• Measured indexing cost and query performance
 – TODO: factor in the cost of merging
Indexing cost

- Number of mappers depends on input size
 - More data, more machines needed for full parallelism
- Number of reducers can be chosen based on a trade-off
 - Too many: very small indices
 - Too few: little parallelization
- Single machine indexing would have taken days
- Real time can be significantly improved by reducing dictionary
- Vertical indexing is less efficient, though not much

<table>
<thead>
<tr>
<th>Metric</th>
<th>Horizontal</th>
<th>Vertical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real time</td>
<td>3h 18m</td>
<td>4h 51m</td>
</tr>
<tr>
<td>Maps</td>
<td>2,000</td>
<td>2,000</td>
</tr>
<tr>
<td>Time per map</td>
<td>166s</td>
<td>581s</td>
</tr>
<tr>
<td>Map output records</td>
<td>4.018×10^9</td>
<td>2.627×10^9</td>
</tr>
<tr>
<td>Map output size</td>
<td>144 GB</td>
<td>68 GB</td>
</tr>
<tr>
<td>Reduces</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Time per reduce</td>
<td>8371s</td>
<td>14987s</td>
</tr>
<tr>
<td>Reduce shuffle bytes</td>
<td>42 GB</td>
<td>28 GB</td>
</tr>
</tbody>
</table>
Keyword query performance (4450 unique queries)
Unigram field query performance (4450 unique queries)
Conclusions

• Horizontal index seems to be more efficient for both keyword queries and field restricts
 – verify under more ideal setting
 – verify under different memory constraints
 – check multi-word queries, joins on different properties
 – different datasets: microformats, RDFa vs. Linked Data

• Further efficiency improvements
 – Language detection
 – Local sort