Modeling human behavior in virtual humans

Stacy Marsella

with Jon Gratch, Jina Lee, David Pynadath, Mei SI

Institute for Creative Technologies
University of Southern California
Background

Computational Models of Human Behavior

* Cognitive and Emotional processes
* Social Interaction & Theory of Mind
* Nonverbal behavior (Facial Expressions, gesture, posture, gaze…)

Applications

Virtual Humans, Social Simulation, Interactive Drama

Tools

PsychSim/Thespian, SmartBody, NVBG
Outline

- Emotion and it’s impact on human behavior
- Why model emotion computationally?
 - Application: Virtual Humans for Serious Games
- How we model it
 - EMA
- Validation: Can the model predict human behavior in a game?
- Example of how we use it in Virtual Humans
 - Listener feedback
Why study emotion?

“Reason is, and ought to be, only the slave of the passions”

David Hume, 1711-1776
What is emotion?

- **Functions associated with individual autonomy**
 - Rapid, continually adjusting assessment of significant events
 - Interruption of behaviors and changing of goals
 - Action preparation: energizes body, changes physical orientation

- **Functions associated with social interaction**
 - Signaling: broadcast information about mental state
 - Coordination: orient and coordinate group response

- Immersion and contagion
Why Study Emotion?

Emotion influences cognitive processes

- **Emotions change perception & decision-making**
 - Angry people blame others/outgroups (Keltner et al 93; Mackie et al 00)
 - Quicker to perceive threats (DeSteno et al 2000/2004)
 - Underestimate risk (Lerner & Keltner 2000/2001)

- **Emotions impact memory**
 - Mood Congruent Recall & Learning (Bower, 91)
Why Study Emotion?

Emotion influences human behavior

- **Emotions change behavior**
 - Anger primes aggressive responses (Keltner & Haidt 1999)
 - Characteristic displays (Spoor & Kelly 04, Parkinson 01, Darwin, Ekman)
Why Study Emotion?

Emotion influences social behavior

- **Emotions impact social interaction**
 - Distress elicits helping *(Eisenberg et al. 89)*
 - Anger elicits fear *(Dimberg & Ohman 96)*
 - Negotiators concede more to angry partner *(van Kleef et al. 2007)*
 - Emotion communicates information to other social actors *(Darwin; Parkinson 01)*
 - Emotion expression as signal

- **Emotions impact social systems**
 - Improves group utility *(Darwin; Frank, 1988)*
Why model emotion?
Claim: emotion research has important benefits:

- **Study human behavior**
 - Inform theory development (Marsella et al. 2010)

- **Inform general theories of intelligence**
 - Provide insights to expanding general theories
 - Simon, 67; Minsky, 85; Scheutz, & Sloman, 2001

- **Enhance human computer interaction**
 - Recognize and respond to human’s emotional influences
 - Modeling Player, User, Student (Lisetti & Schiano, 2000; Conati & MacLaren, 2004)
 - Emotional Virtual Humans for Education & Training
Virtual Humans

Intelligent agent that supports face-to-face social interactions with human users in virtual reality

Characters with a brain
- Reason about environment
- Understand and express emotion
- Communicate through speech & gesture
- Play the role of teachers, peers, adversaries
Social Skills Training
Health Communication and Intervention

Persuasive Interfaces

Seek Mental Health Help (Rizzo et al.)

Medical adherence / outpatient procedures (Bickmore)

Coping Skills and Empathy Training

Anti-Bullying (Aylett et al)

Deal with child's illness (Marsella et al)

Intervention and Prevention

Autism (Tartaro & Cassell)

AIDS Prevention (Miller et al.)
Entertainment

Common Theme: Central Role of Emotion
- User immersed in emotional scenario
 - Talking to a patient with a serious illness
 - Confronting a gunfighter
- Virtual human must convey emotion
 - Clinician’s compassion for patient
 - Bartender having a gun pointed at him
Research & Technology of Virtual Humans

Perception
• Morency

NLP
• DeVault, Hovy, Traum

Emotion/Cognition
• Gratch, Marsella, Pynadath

Behavior Generation
• Lee & Marsella

Animation
• Chiu, Marsella & Shapiro
EMA: Computational Model of Emotion

- How do we computationally model emotion?
 - Both the causes and cognitive/behavioral consequences of emotion?

- How do we evaluate/validate these models?
 - Can it predict human behavior?
 - And model users?

- How do we use the model in virtual humans?
Theoretical Perspective:
Appraisal Theory

(Arnold, Lazarus, Frijda, Scherer, Ortony et al.)

• Emphasizes cognitive antecedents of emotion
 – Emotion arises from an evolving subjective interpretation of person’s relation to their environment
 – Well-suited to computational realization
 • Emotion arises from inference over representations
Theoretical Framework: Appraisal Theory
(Arnold, Lazarus, Frijda, Scherer, Ortony et al.)

- Environment
- Appraisal
 - Emotion
 - Action Tendencies
 - Problem-Focused
 (act on world)
 - “Affect”
 - Physiological Response
 - Emotion-Focused
 (act on self)
- Goals/Beliefs/Intentions

Coping Strategy
Theoretical Framework: Appraisal Theory

(Arnold, Lazarus, Frijda, Scherer, Ortony et al.)

Environment → Desirability → Goals/Beliefs/Intentions

Environment → Expectedness → Goals/Beliefs/Intentions

Environment → Controllability → Goals/Beliefs/Intentions

Environment → Causal Attribution → Goals/Beliefs/Intentions

Environment → Emotion

Emotion: Action Tendencies, "Affect", Physiological Response

Emotion: Take action, Seek support

Emotion: Coping Strategy

Coping Strategy: Resignation, Distancing, Wishful Thinking
Appraisal Theory as Architectural Specification

To derive a computational model need to model:

• Representation of Person-Environment relation

• Derivation of appraisal values.

• Map from appraisals to emotions.

• Behavioral, cognitive consequents of emotion
 – Coping

• **EMA: EMotion & Adaptation**
 – (Gratch & Marsella 2005; Marsella & Gratch 2009)
Causal Interpretation
Working memory of plans, beliefs, desires, intentions

Past Events
Past Act
Cause: Other
Intend: yes
Prob: 100%

Goal
Utility: 50
Probability: 100%
Belief: False

Present
Inhibits

Future Plans
Future Act
Cause: self
Intend: yes
Probability: 50%

Facilitates
Goal
Utility: 50
Probability: 50%
Intend-that: True

Planning
Perception
Dialogue
Action

Cognitive Operations (inference)
EMA: Appraisal Derivation Model

- **Appraisal as evaluation of the causal interpretation**
 - Define appraisal variables in terms of features
 - Fast, parallel pattern matching

- **Appraisal Variables**
 - *Desirability*: Does proposition facilitate/inhibit agent’s utility
 - *Expectedness*: Could truth value of a state be predicted.
 - *Controllability*: Can the outcome be altered by agent
 - *Changeability*: Can outcome be altered by other causal agent
 - *Causal Attribution*: what agent is blameworthy/praiseworthy

- **Scope**
 - Blueprint for a social agent
EMA: Coping Model

- Sequential, deliberate, mediated by focus of attention
- Problem-focused → Take Action, Make Plans
- Emotion-focused → Alters Attention, Beliefs & Desires:
 - Attention
 - Avoidance → Take action that alters attention
 - Beliefs
 - Wishful Thinking → Change belief / likelihood
 - Shift blame → Change causal attribution
 - Desires
 - Distancing → Lower utility of desired, threatened state
 - Find silver lining → Change utilities
 - Intentions
 - Resignation → Drop intention to achieve a desired state
- Key: Finding ecological niche
 - Concretize Coping Theory: Framework for modeling emotion’s impact
Future Act
Cause: self
Intend: yes
Probability: 50%

Goal
Utility: 50
Probability: 50%
Intend-that: True

Past
Past Act
Cause: Other
Intend: yes
Prob: 100%

Inhibits

Present
Goal
Utility: 50
Probability: 100%
Belief: False

Future
Future Act
Cause: self
Intend: yes
Probability: 50%

Threat
Desirability: -50
Likelihood: 100%
Causal Attribution: Other
Control: moderate
Emotion: Anger(50)

Challenge
Desirability: 50
Likelihood: 50%
Causal Attribution: self
Control: Moderate
Emotion: Hope(25)

Facilitates
Past Act

Cause: Other
Intend: yes
Prob: 100%

Goal
Utility: 50
Probability: 100%
Belief: False

Inhibits

Future Act

Cause: self
Intend: yes
Probability: 50%

Challenge
Desirability: 50
Likelihood: 50%
Causal Attribution: self
Control: Moderate
Emotion: Hope(25)

Threat
Desirability: -50
Likelihood: 100%
Causal Attribution: Other
Control: moderate
Emotion: Anger(50)

Resignation
(abandon goal)

Coping
Validity & Application

• Does the model predict human emotional reactions?

• How can such models drive Virtual Human behavior and influence HCI?
Validation: Coping

- **Human tendency to alter mental beliefs and commitments in response to emotion**
 - Often characterized as irrational

- **But argued to serve important adaptive functions**

- **Questions:**
 - Can EMA predict such “distortions”
 - How do they differ from “rational” models
- **Rational models decouple preferences and beliefs**
 - Desires shouldn’t change beliefs (and vice versa)
 - e.g., Just wanting something shouldn’t make it true
 - Preferences *fixed* over time

![Diagram](attachment:image.png)
• Coping serves to “confound” beliefs and desires
 • Emotion-biases on decision making (Loewenstein & Lerner, 2003)
 • Cognitive dissonance (Festinger57)
 • Motivated inference (Kunda87)
 – Few attempts to model computationally (Marsella&Gratch; Dias)
Coping Study (Marsella, Gratch et al., ACII09)

Can EMA predict human behavior in experimental games

Does success/failure during game alter
Desire to win?
Intention to play?
Perceived likelihood of winning?

Model Driven Experimentation Paradigm
- Use EMA to generate task specific predictions
- Evaluate predictions through human subject experiments
Build Model

Simulate some games
- “Winning” vs. “Losing”
- Developed and validated in 2 pilot studies

Note EMA predictions
- Automatically derives emotion and coping tendencies
- Appraisals and coping tendencies constitute a set of predictions that can be tested against data
EMA’s Coping Predictions (subset)

Emotion will “irrationally” change

- **Desires** (distancing)
 - H1: Subjective utility of winning will drop as player loses
 - H1a: Magnitude of subjective utility predicts intensity of effect

- **Intentions** (resignation)
 - H2: Intention to play will drop as player loses
 - H1a: Magnitude of subjective utility predicts intensity of effect

- **Beliefs** (wishful thinking)
 - H3: Losing interacts with utility to predict probability bias
 - Players that want to win will perceive higher win probability in lose condition
Human subjects study 100 participants (2 conditions)*

- Prior Expectations
 - Time 0
 - Time 1
 - Time 2

- Winning condition
 - WINNING
 - WON GAME

- Losing condition
 - LOSING
 - LOST GAME

Assess emotions and coping

Confederate

Participant

Hidden Camera
Instruments

– Measured Emotions and Appraisals
 – Self-Report: based on Ellsworth and colleagues’ appraisal questionnaire (e.g., Treynor, Ellsworth, & Gonzalez, in preparation; also see Smith & Ellsworth, 1985)

– Measured coping
 – Self-Report: Computer Coping Questionnaire (based on SCPQ; Perrez & Reicherts, 1992)
 – Behaviorally: Response time
Subjects find experience to be emotional

- Emotions change predictably throughout game
- Appraisals of utility and probability predict emotion intensity
Coping

- Rationality assumption: desire should be independent of probability
- Emotion distorts desires and intentions
 - H1 and H2 supported: losers distance and resign (sour grapes)
 - But also “coping” with winning observed
 - EMA implementation makes no prediction
Individual differences: Impact depends on initial preferences

- H1a and H2a also supported: strength of an individual’s desire predicts strength of coping response
 - In Lose condition: Subject’s with initial high desire to win distanced and resigned more
 - In Win condition: Subject’s with initial low initial desire to win became more engaged (EMA makes no prediction)
Discussion

- **Overall, results suggest that coping moves subjects toward more positive emotional states**
 - Distancing and resignation of losing, high motivated subjects reduces negative emotionality of threat to high utility goal
 - Increased engagement of winning, low motivated subjects enhances positive emotions from previously unattainable goal

- **HCI: Suggests appraisal theory as a tool for understanding and influencing user’s desires and intentions**

- **Directions:**
 - Different Win-Loss Trajectories
 - Hard fought close battle; Come from behind; Total rout
The Expression of Affective Information
Functions of Nonverbal Behavior

AFFECTIVE/COGNITIVE
- Express Emotion, Attitude
- Reveal Traits, Culture
- Engender Trust, Rapport

INTERACTIONAL
- Convey Awareness/Recognition
- Initiate/Break contact
- Take/Hold/Give turns

PROPOSITIONAL
- Emphasize/Contrast
- Refer
- Depict feature
- Change topic
- Request/Give feedback

PHYSICAL
- Tired, Alive/Homeostasis, Health

- Raise eyebrows
- Gaze / Gaze Posture
- Nod
- Smile
- Shake head
- Beat
- Point/Deictics
- Gesture
- Move eyebrows
- Toss head
- Body orientation
- Pause
- Breathing
- Drop Jaw
- Walk Style
- Postural Shifts
Issues for Nonverbal Behavior Generation

• **Model when behavior occurs and its influence**
 – What is the context in which a behavior used?
 – How does the Behavior/Context impact its influence?

• **Realize the appearance & dynamics**
 – The appearance and dynamics impacts its interpretation/influence.
 – e.g., Smile dynamics influences trust, Krumhuber et al. 2007

• **Bringing virtual humans into life**
 – Encode into virtual humans
 – Evaluating its impact on human – virtual human interaction
Approaches to Modeling Nonverbal Knowledge

Science & Arts
- Benefits: Centuries of research to leverage
 - Excellent place to start
- Limitations: Gaps
 - Little sufficiently precise data on appearance & dynamics
 - Sparse coverage of when behavior is exhibited
 - Individual and Cultural differences

Data-driven, machine learning
- Benefits: Fill the Gaps
 - Can capture data on actual behavior
 - Including Individual and Cultural differences
- Limitations: Getting Data
 - Especially difficult if data needs to be annotated
Example: Responsive listening

- **Challenge of Listening Behavior**
 - Powerful impact on interaction
 - Traditionally Virtual Humans used idle, bobble-head behaviors to suggest active listening
Types of Listener Feedback

- **Generic feedback**
 - Low-level feedback tied to shallow features of speaker behavior
 - **Attendance:** gaze toward speaker, head nod
 - **Mimicry:** speaker’s head nods, gaze direction, facial expression, etc.

- **Specific feedback**
 - Related to comprehension of and reaction to the utterance
 - Through various nods, facial expressions, gaze movements
 - **Comprehension:** partial understand, confusion
 - **Valenced reactions:** Anger, surprise, like, dislike, interested, agree

- **Tied to role and goals**
 - Role: Addressee, bystander, eavesdropper
 - E.g., Bored Listener wanting to leave conversation

Beyond the Bobble-head (Wang, Lee & Marsella 2011)

Nonverbal Behavior Generator

Listener’s
- Goals/Roles
- Unfolding understanding
- Emotional Reaction
- Perception of Speaker’s NVB & Prosodic Features

Cognition
Dialog
Emotion
Perception

Function Rules
NVB Rules
Behavior Description
NVBG’s Listening Behavior (Wang, Lee & Marsella 2011)

Generic feedback:
• Show attention
• Mimic speaker’s gaze and head nods
• Track speaker gestures

Analysis → Behavior Suggestion → Behavior Selection

Function Rules → NVB Rules → Behavior Description

Cognition
Dialog
Emotion
Perception

Nonverbal Behavior Generator Analysis Behavior Suggestion Animation System

Challenges NVBG SmartBody
NVBG’s Listening Behavior (Wang, Lee & Marsella 2011)

Nonverbal Behavior Generator

Cognition
- Dialog
- Emotion
- Perception

Analysis → Behavior Suggestion → Behavior Selection

Specific feedback:
- Comprehension feedback
 - e.g. think, gather info, confused
- Affective feedback
 - e.g. joy, anger, dislike
NVBG’s Listening Behavior (Wang, Lee & Marsella 2011)

Nonverbal Behavior Generator

Analysis ➔ Behavior Suggestion ➔ Behavior Selection

Function Rules ➔ NVB Rules ➔ Behavior Description

Cognition

Dialog

Emotion

Perception

Challenges NVBG SmartBody

Conflict Resolution:
• Specific Feedback Dominates Generic
Gunslinger: Utah reacting to User’s offer of a job
Summary

- **Emotion has a powerful impact on human behavior**
 - Both one's own and others' emotion

- **Value for modeling and predicting human behavior**
 - EMA predicts change in desires & intentions in competitive game

- **Value for shaping human computer interaction**
 - Give insight into user behavior
 - Key component in virtual humans