Deterministic and Stochastic Models of Bicoid Protein Gradient Formation in Drosophila Embryos

Wei Liu and Mahesan Niranjan

Learning and Inference in Computational Systems Biology 2010

School of Electronics and Computer Science
University of Southampton
United Kingdom
Drosophila
Morphogen Concentration

Thresholds

Start

Spatial axis

French Flag
Bicoid Morphogen

- Drosophila body plan and position information.
- Providing the concentration mechanism to activate other gap gene in drosophila embryo.
- Contributing to set up the anterior posterior axis.
- Controlling cells fate along 70% of this axis.
Bicoid Morphogen Concentration

Anterior part

Posterior part
Constant Source

- Usual assumption

\[S_{con}(x, t) = S_0 \delta(x) \Theta(t) \]
New Source Model

\[S_{com} = S_0 \delta(x)(\Theta(t) - \Theta(t - t_0)) + S_0 \delta(x)\Theta(t - t_0) \exp \left\{ -\frac{t - t_0}{\tau_m} \right\} \]

The reaction-diffusion equation of single-morphogen concentration system is below:

\[
\frac{\partial}{\partial t} M(x,t) = D \frac{\partial^2}{\partial x^2} M(x,t) - \tau_p^{-1} M(x,t) + S(x,t)
\]

- \(M(x,t)\) is morphogen concentration
- \(S(x,t)\) is a general source term at the anterior pole
- \(D\) is diffusion constant
- \(\tau_p\) is half-life of the morphogen protein

Turing, A.: *The chemical basis of morphogenesis.* (1952)
Bergmann, S.: *Pre-Steady-State Decoding of the Bicoid Morphogen Gradient.* (2007)
The reaction-diffusion equation of single-morphogen concentration system with cytoplasmic flow:

\[
\frac{\partial}{\partial t} M(x,t) = D \frac{\partial^2}{\partial x^2} M(x,t) - \tau_p^{-1} M(x,t) - v \frac{\partial}{\partial x} M(x,t) + S(x,t)
\]

- \(M(x,t)\) is morphogen concentration
- \(S(x,t)\) is a general source term at the anterior pole
- \(D\) is diffusion constant
- \(\tau_p\) is half-life of the morphogen protein
- \(v\) is flow velocity

Hecht, I. : *Determining the scale of the Bicoid morphogen gradient*. (2009)
Stochastic Model

- Bicoid proteins chemical reaction diffusion

... 100 subvolumes ...

\[S(t) \]

- Bicoid proteins production

- Bicoid proteins degradation

- Bicoid proteins diffusion
Solution to Model with Constant Source

![Diagram showing the solution to the model with constant source, with axes labeled for time (t), position (x), and production rate (S_{con})]
Solution to Model with Combined Source
Solution to Stochastic model
Measured Data

- Integrated 2D patterns - reconstructed image 14A-2

![Graph showing integrated 2D patterns with reconstructed image 14A-2]
Measured Data

- 1D integrated data - cycle 14A (1-8 classes)
Matching Models to Data

Diffusion model with realistic source

Flyex Database

Time (mins)
Comparison Between Model Output and Database in Cycle14A with 8 Classes
Comparison Between Model Output and Database in Cycle14A with 8 Classes
Estimating Parameter Values

- Squared error between model output and measured intensities to evaluate error.

\[E = \sum_{t=T_1}^{T_2} \sum_{x=1}^{L} \left(M(x,t) - M_d(x,t) \right)^2 \]

- Parameters estimation:
 - Diffusion constant \(D = 1.8 \mu m^2 / s \),
 - The time mRNA starts to decay \(t_0 = 118 \) mins,
 - mRNA half-life \(\tau_m = 29 \) mins
 - Bicoid protein half-life \(\tau_p = 120 \) mins.
Matching Parameter Values to Data

- The errors in the joint space of diffusion constant and maternal mRNA decay onset time.
Conclusion

- Widely used model with a constant source is unrealistic.
- Three models with realistic source.
- Matching models output to database.
- Developing data driven model for embryo spatio-temporal data i.e. Kriged Kalman Filter
Dynamic control of positional information in the early *Drosophila* embryo

Johannes Jaeger, Svetlana Surkova, Maxim Blagov, Hilde Janssens, David Kosman, Konstantin N. Kozlov, Manu, Ekaterina Myasnikova, Carlos E. Vanario-Alonso, Maria Samsonova, David H. Sharp & John Reinitz