Discussion

Peter Orbanz

Cambridge University and Columbia University
Is generalization possible?

- Exchangeability is not just a simplifying assumption
- Prediction without assumptions is not possible (Hume’s induction problem)

In context: De Finetti’s theorem

- Prediction is possible if underlying pattern does not change over time

Non-exchangeable data

- Requires careful justification of what prediction/generalization means
- Substitute sequential exchangeability by other form of permutation invariance/symmetry
Again: De Finetti

\[P(X_1 \in A_1, X_2 \in A_2, \ldots) = \int_{\mathcal{P}} \left(\prod_{i=1}^{\infty} P(X_i \in A_i) \right) Q(dP) \]

Idea (Blackwell, Ferguson, ...):
- Holds for *some* random probability measure \(P \)
- Model distribution \(Q \) of \(P \) directly, e.g. \(Q = \text{Dirichlet process} \)

In the 1990s
Universal inference idea:
- Define prior with “large support”
- Combined with Gibbs sampler: Universal inference engine

D. Draper, discussion of Walker & Damien & Laud & Smith, JRSS B, 1999

Today
- Express \(P \) on some parameter space (functions, partitions, binary matrices, . . .)
Consistency and Convergence

Machine learning:
- Emphasizes different models than mathematical statistics
- Machine learning-specific problems have not been addressed
- E.g., are models consistent w.r.t. latent variables?

Gibbs sampling
- Hardly any systematic work
- How many models have we actually seen samples from?
- Hierarchies drastically blow up state space
Geman & Geman, 1984

128 x128 grid
8 nearest neighbor edges
K = 5 states
Potts potentials: $\beta = 2/3$

200 Iterations

10,000 Iterations

E. Sudderth & M. I. Jordan, NIPS 2008