Estimating the contribution of non-genetic factors to gene expression using Gaussian Process Latent Variable Models

Nicolò Fusi and Neil Lawrence

Learning and Inference in Computational Systems Biology

31st March 2010
1 eQTL mapping
2 Dataset
3 The model
4 Experiments
5 Conclusions
Outline

1. eQTL mapping
2. Dataset
3. The model
4. Experiments
5. Conclusions
Expression Quantitative Trait Loci - eQTL

- Transcript abundance is regulated by polymorphisms in the regulatory elements
- Statistical methods can be used to discover which polymorphism affects the expression levels of a gene
- This mapping sometimes is obfuscated by non-genetic factors
Expression Quantitative Trait Loci - eQTL

- Transcript abundance is regulated by polymorphisms in the regulatory elements
- Statistical methods can be used to discover which polymorphism affects the expression levels of a gene
- This mapping sometimes is obfuscated by non-genetic factors
Expression Quantitative Trait Loci - eQTL

- Transcript abundance is regulated by polymorphisms in the regulatory elements
- Statistical methods can be used to discover which polymorphism affects the expression levels of a gene
- This mapping sometimes is obfuscated by non-genetic factors
Outline

1. eQTL mapping
2. Dataset
3. The model
4. Experiments
5. Conclusions
Single Nucleotide Polymorphisms

A single nucleotide polymorphism is a variation in the DNA sequence that affects only one nucleotide.

- They make up about 90% of all human genetic variation
- They capture 84% of the total genetic variation in gene expression
Single Nucleotide Polymorphisms

A single nucleotide polymorphism is a variation in the DNA sequence that affects only one nucleotide.

- They make up about 90% of all human genetic variation
- They capture 84% of the total genetic variation in gene expression
Single Nucleotide Polymorphisms

A single nucleotide polymorphism is a variation in the DNA sequence that affects only one nucleotide.

- They make up about 90% of all human genetic variation
- They capture 84% of the total genetic variation in gene expression
The Hapmap dataset

- a multi-country effort to identify and catalog genetic similarities and differences in human beings
- 3.1 million human single nucleotide polymorphisms have been genotyped
- 270 individuals from 4 geographically diverse populations (Hapmap phase II)
The Hapmap dataset

- a multi-country effort to identify and catalog genetic similarities and differences in human beings
- 3.1 million human single nucleotide polymorphisms have been genotyped
- 270 individuals from 4 geographically diverse populations (Hapmap phase II)
The Hapmap dataset

- A multi-country effort to identify and catalog genetic similarities and differences in human beings
- 3.1 million human single nucleotide polymorphisms have been genotyped
- 270 individuals from 4 geographically diverse populations (Hapmap phase II)
Project GENEVAR - GENe Expression VARiation

- Gene expression data from EBV-transformed lymphoblastoid cell lines (Stranger et al., Nature Genetics 2007)
- 270 individuals from Hapmap phase I and II
- 47,293 gene probes
Project GENEVAR - GENe Expression VARiation

- Gene expression data from EBV-transformed lymphoblastoid cell lines (Stranger et al., Nature Genetics 2007)
- 270 individuals from Hapmap phase I and II
- 47,293 gene probes
Project GENEVAR - GENe Expression VARiation

- Gene expression data from EBV-transformed lymphoblastoid cell lines (Stranger et al., Nature Genetics 2007)
- 270 individuals from Hapmap phase I and II
- 47,293 gene probes
Confounding factors

Several studies have shown that non-genetic factors can obfuscate associations:

- **Known Factors**: age, sex, ethnicity, ...
- **Batch effects**: optical effects
- **Unknown factors**
Several studies have shown that non-genetic factors can obfuscate associations:

- **Known Factors**: age, sex, ethnicity, ...
- **Batch effects**: optical effects
- **Unknown factors**
Several studies have shown that non-genetic factors can obfuscate associations:

- **Known Factors**: age, sex, ethnicity, ...
- **Batch effects**: optical effects
- **Unknown factors**
Modelling non-genetic factors

- We model non-genetic factors as unobserved latent variables.
- Gene expression levels are described as a linear function of SNP data and non-genetic factors

\[
Y = SV + XW + \mu_1^T + \epsilon
\]
Modelling non-genetic factors

- We model non-genetic factors as unobserved latent variables.
- Gene expression levels are described as a linear function of SNP data and non-genetic factors

\[Y = SV + XW + \mu 1^T + \epsilon \]
Modelling non-genetic factors

- We model non-genetic factors as unobserved latent variables.
- Gene expression levels are described as a linear function of SNP data and non-genetic factors

\[Y = SV + XW + \mu 1^T + \epsilon \]
Modelling non-genetic factors

- Our model is inspired by Stegle et al, *Lecture notes in Computer Science (2006)*.
- We model non-genetic factors as unobserved latent variables.
- Gene expression levels are described as a linear function of SNP data and non-genetic factors

\[Y = SV + XW + \mu 1^\top + \epsilon \]
Modelling non-genetic factors

- We model non-genetic factors as unobserved latent variables.
- Gene expression levels are described as a linear function of SNP data and non-genetic factors

\[Y = SV + XW + \mu 1^T + \epsilon \]
Modelling non-genetic factors

- We model non-genetic factors as unobserved latent variables.
- Gene expression levels are described as a linear function of SNP data and non-genetic factors

\[Y = SV + XW + \mu 1^T + \epsilon \]

We model non-genetic factors as unobserved latent variables.

Gene expression levels are described as a linear function of SNP data and non-genetic factors

\[Y = SV + XW + \mu 1^\top + \epsilon \]
Modelling non-genetic factors

- We model non-genetic factors as unobserved latent variables.
- Gene expression levels are described as a linear function of SNP data and non-genetic factors

\[Y = SV + XW + \mu 1^T + \epsilon \]

We model non-genetic factors as unobserved latent variables.

Gene expression levels are described as a linear function of SNP data and non-genetic factors

\[Y = SV + XW + \mu 1^T + \epsilon \]
dual Probabilistic Principal Component Analysis

We learn the parameters by:

- Marginalizing \(W, V, \mu, \epsilon \)
- Maximizing the log-likelihood with respect to the latent variables \(X \)

For a particular choice of priors over \(W \) and \(V \) this approach is equivalent to probabilistic Principal Component Analysis
dual Probabilistic Principal Component Analysis

We put Gaussian priors over \mathbf{W}, \mathbf{V} and μ:

\[
P(\mathbf{W}) = \prod_{i=1}^{D} N(\mathbf{w}_i|\mathbf{0}, \alpha_w \mathbf{I})
\]

\[
P(\mathbf{V}) = \prod_{i=1}^{D} N(\mathbf{v}_i|\mathbf{0}, \alpha_v \mathbf{I})
\]

\[
P(\mu) = N(\mu|\mathbf{0}, \alpha_\mu \mathbf{I})
\]
dual Probabilistic Principal Component Analysis
dual Probabilistic Principal Component Analysis

The likelihood of \mathbf{Y} can be then written as

$$ P(\mathbf{Y}|\mathbf{W}, \mathbf{X}, \mathbf{S}, \mu) = \prod_{j=1}^{D} \mathcal{N}(y_j|\mathbf{Wx}_j + \mathbf{Vs}_j + \mu, \sigma^2 I) $$

Marginalizing $\mathbf{W}, \mathbf{V}, \mu, \epsilon$ we obtain the marginal likelihood

$$ P(\mathbf{Y}|\mathbf{X}) = \prod_{j=1}^{D} \mathcal{N}(y_j|0, \alpha_w \mathbf{XX}^\top + \alpha_v \mathbf{SS}^\top + \alpha_\mu + \sigma^2 I) $$
The likelihood of Y can be then written as

$$P(Y|W, X, S, \mu) = \prod_{j=1}^{D} N(y_j|Wx_j + Vs_j + \mu, \sigma^2 I)$$

Marginalizing W, V, μ, ϵ we obtain the marginal likelihood

$$P(Y|X) = \prod_{j=1}^{D} N(y_j|0, \alpha_w XX^T + \alpha_v SS^T + \alpha_\mu + \sigma^2 I)$$
Population structure
Accounting for population structure

\[C = \alpha_w XX^\top + \alpha_v SS^\top + \alpha_\mu + \sigma^2 I \]

\[C = \alpha_w XX^\top + \alpha_v SS^\top + \alpha_p PP^\top + \alpha_\mu + \sigma^2 I \]

\[C = \alpha_w XX^\top + \alpha_v SS^\top + \alpha_p PP^\top + \alpha_g GG^\top + \alpha_\mu + \sigma^2 I \]
Accounting for population structure

\[C = \alpha_w \mathbf{X} \mathbf{X}^\top + \alpha_v \mathbf{S} \mathbf{S}^\top + \alpha_p \mathbf{P} \mathbf{P}^\top + \alpha_\mu + \sigma^2 \mathbf{I} \]
Accounting for population structure

\[C = \alpha_w \mathbf{X} \mathbf{X}^\top + \alpha_v \mathbf{S} \mathbf{S}^\top + \alpha_p \mathbf{P} \mathbf{P}^\top + \alpha_{\mu} + \sigma^2 \mathbf{I} \]
At each locus we compute the log-odds score:

\[L_i = \log_{10} \left\{ \prod_n \frac{P(Y_m|s_{n,j}, \theta_{i,n})}{P(Y_m|\theta_{bkg})} \right\} \]

The significance of an association is evaluated via permutation testing.
Traditional eQTL scan
eQTL scan accounting for non-genetic factors
Traditional eQTL scan
eQTL scan accounting for non-genetic factors
Conclusions

- We presented a model that explicitly accounts for non-genetic factors
- Using this model we can detect an higher number of significant associations
- Many extensions are possible (future work)