Real-time Image Enhancement Using Edge-Optimized À-trous Wavelets
Overview

• Motivation
• À-trous Wavelets
• Edge-avoiding Wavelets
• Edge-optimized Wavelets
• Contrast Enhancement
• Including depth cues from stereo cameras
Edge-Avoiding À-Trous Wavelet Transform for fast Global Illumination Filtering

[Dammertz, Sewtz, Hanika, Lensch – HPG 2010]
Edge-Avoiding À-Trous Wavelet Transform for fast Global Illumination Filtering

[Dammertz, Sewtz, Hanika, Lensch – HPG 2010]
HPG 2010

paper1029

Edge-Avoiding A-Trous Wavelet Transform for fast Global Illumination Filtering

supplemental Material
Input to our System

Filtering is based on
• normal buffer
• position buffer
• original, noisy Monte Carlo image
 • may contain high frequency information for the illumination which
 is not represented in the other buffers
Pipeline

multiple iterations of filtering based on edge-stopping function

path traced image

position

normal

smoothed illumination

detail texture
Decimating Wavelet Transform

- Apply the same filter multiple times
 - reduce the image resolution at each iteration

- Benefits: multi-scale representation, very fast!
- Drawback: filtered information at few locations only
Decimating Wavelet Transform

- Apply the same filter multiple times
 - reduce the image resolution at each iteration

- Benefits: multi-scale representation, very fast!
- Drawback: filtered information at few locations only
 - Where is the edge?
Decimating Wavelet Transform

• Apply the same filter multiple times
 • reduce the image resolution at each iteration

• Benefits: multi-scale representation, very fast!
• Drawback: filtered information at few locations only
 • Where is the edge?
Decimating Wavelet Transform

- Apply the same filter multiple times
 - reduce the image resolution at each iteration

- Benefits: multi-scale representation, very fast!
- Drawback: filtered information at few locations only
 - Where is the edge?
Undecimated Transform

- At each iteration convolve with a Gaussian
 - double the filter size

- Benefit: filtered information at every pixel
- Drawback: huge effort due to growing filter size (4 x samples)
À-Trous Wavelet Transform

- “With holes”
- At each iteration convolve with a Gaussian
 - double the filter size
 - introduce more and more holes

Benefits:
- constant effort per iteration (in contrast to undecimated wavelets)
- filtered information at each pixel (in contrast to decimated wavelets)
À-Trous Wavelet Transform

- “With holes”
- At each iteration convolve with a Gaussian
 - double the filter size
 - introduce more and more holes

Benefits:
- constant effort per iteration (in contrast to undecimated wavelets)
- filtered information at each pixel (in contrast to decimated wavelets)
À-Trous Wavelet Transform

- "With holes"
- At each iteration convolve with a Gaussian
 - double the filter size
 - introduce more and more holes

- Benefits:
 - constant effort per iteration (in contrast to undecimated wavelets)
 - filtered information at each pixel (in contrast to decimated wavelets)
À-Trou Wavelet Transform

1. At level \(i = 0 \), start with input signal \(c_0(p) \).

2. \(c_{i+1}(p) = c_i(p) * h_i \), where \(*\) is the discrete convolution.
 The distance between the entries in the filter \(h_i \) is \(2^i \).

3. \(d_i(p) = c_i(p) - c_{i+1}(p) \),
 where \(d_i \) are the detail or wavelet coefficients of level \(i \).

4. Repeat 2 and 3 until \(i = N \) (number of levels to compute).

5. \(\{d_0, d_1, \ldots, d_{N-1}, c_N\} \) is the wavelet transform of \(c \).

The reconstruction is given by \(c = c_N + \sum_{i=0}^{N-1} d_i \).
À-Trous Wavelet Filtering

1. At level $i=0$, start with input signal $c_0(p)$.

2. $c_{i+1}(p) = c_i(p) \ast h_i$, where \ast is the discrete convolution.

 The distance between the entries in the filter h_i is 2^i.

3. $d_i(p) = c_i(p) - c_{i+1}(p)$,

 where d_i are the detail or wavelet coefficients of level i.

4. Repeat 2 and 3 until $i = N$ (number of levels to compute)

5. $\{d_0, d_1, \ldots, d_{N-1}, c_N\}$ is the wavelet transform of c.

The filtered result is given by $c = c_N + \sum_{i=0}^{N-1} \alpha_i d_i$.
Edge-Optimized À-trous Wavelets | Hendrik Lensch

[Fattal et al. 2007, Dammertz et al. 2010]

Edge-Stopping Function

Compute weighted convolution (compare to bilateral filter)

\[
 c_{i+1}(p) = \frac{\sum_{q \in Q} h_i(q) \cdot w(p, q) \cdot c_i(p)}{\sum_{q \in Q} h_i(q) \cdot w(p, q)}
\]

With weights

\[
 w(p, q) = w_X(p, q) \quad \text{with} \quad w_X(p, q) = e^{-\frac{||I_p - I_q||}{\sigma_X^2}}
\]

\(\sigma_X\) can be controlled for each level independently

--

noisy

orig. à-trous

edge-preserving

\[w_{rt} \cdot w_n\]
Input
Level 0
Level 1
Level 2
Comparison to Other Wavelet Bases

edge-avoiding à-trous

CDF(2,2)
Comparison to Other Wavelet Bases

edge-avoiding à-trous

difference

edge-avoiding CDF(2,2)

[Fattal 2009]
Comparison to Other Wavelet Bases

- Edge-avoiding à-trous
 5x5 – 5 iterations, 5.6 ms

- Bilateral filter
 90x90 – one iteration, 2 min
Contrast Enhancement

input

edge-avoiding decimated wavelets edge-optimized à-trous
Optimizing the Edge Weights

too weak halo

too strong gradient reversal

optimized

[Hanika, Dammertz, Lensch – Pacific Graphics 2011]
Edge Optimization

- Each edge can have different width / sharpness / contrast
- For each level i and each pixel j optimize σ_X such that the detail $d_{i,j}$ gets as small as possible while keeping a smooth base layer $c_{i,j}$:

$$e_j = d_{i,j}^2 + \lambda \cdot \left\| \nabla c_{i,j} \right\|$$

- Simply try four different σ_X for each pixel
Edge Optimization

standard à-trous

edge-optimized à-trous

level 3 level 4 level 3 level 4
Edge Optimization – Detail Layer

standard à-trous

edge-optimized à-trous

level 3

level 4

level 3

level 4

edge-optimization keeps more of the true signal in the base layer
Denoising by Shrinkage

Estimate standard deviation of the noise in the image:

\[\sigma_n = \frac{\text{median}(|d_0|)}{0.6745} \]

Compute optimal shrinkage threshold minimizing risk of information loss

\[T = \frac{\sigma_{n,i}^2}{\sqrt{\max\{0, \sigma_{y,i}^2 - \sigma_{n,i}^2\}}} \]

with \(\sigma_{y,i}^2 = \frac{1}{N} \sum_p d_i(p)^2 \) and \(\sigma_{n,i} = \sigma_n \cdot 2^{-i} \)

Apply shrinkage and contrast boost (if wanted):

\[d'_i = \max\{0, |d_i| - T\} \cdot \text{sign}(d_i) \]

and \(c_{i-1} = c_i + \beta \cdot d'_i \)
Denoising

input: 10% noise PSNR 26.2

à-trou PSNR 34.8
edge-optimized à-trou PSNR 35.9
Denoising

\[\text{à-trous PSNR 34.8} \quad \text{edge-optimized à-trous: PSNR 35.9} \]
Young and Old
Edge-Optimized À-Trous Wavelets – Contrast Enhancement
Edge-Optimized À-Trous Wavelets – Smoothing
Comparison – Contrast Enhancement 2.5x

[Kass&Solomon – SIGGRAPH 2010]
1 second per megapixel

Edge-optimized à-trous
0.01 seconds per megapixel
Comparison – Contrast Enhancement 3.5x

[Kass&Solomon – SIGGRAPH 2010]
1 second per megapixel

Edge-optimized à-trous
0.01 seconds per megapixel
Benefits of Edge-Optimized À-Trous Wavelets

- Fast, fast, fast
- Simple
- Arbitrary filter sizes
- Control over individual frequency bands
 - avoid ringing in contrast enhancement
 - locally adapts to the strength of each edge
 - optimized denoising
MONOCULAR DEPTH CUES FROM STEREO CAMERAS

[Roessing, Hanika, Lensch – Eurographics 2012]
Miniaturization using virtual tilt-shift
Original (left eye)
Guiding the User’s Focus
Monocular Depth Cues

… in the absence of stereo displays

Fix per scene:
- object size
- size relations
- occlusion

Can be modified:
- sharpness
- contrast
- color saturation
- (occlusion)
Edge-optimized Wavelet – Pipeline

Requires multi-scale decomposition
Cleaning up the Depth Map

- Interpolation of missing depth values (stereo shadows)
- Multi-scale cross-bilateral filtering for exact silhouettes
Interpolation of Missing Values
Cross-Bilateral Wavelet Filtering
Depth-dependent Local Contrast Enhancement
Unsharp Masking the Depth Buffer + Local Contrast Enhancement
Edge-Optimized Traces Wavelets | Hendrik Lensch

Depth-based Saturation
Depth-dependent Color Saturation
User Study

Can we manipulate an image in such a way that search tasks are done faster without destroying the image content?

- no arrows, boxes
- object at specific, (magically determined) depth
- measure reaction time
User Study – Experiment 1

- Images with and without ball in any quadrant at any distance
- Images enhanced in various ways
- No “learning” possible
Experiment 1 - Results

- Search time significantly decreased
- Combination of multiple depth cues necessary
Experiment 2

- What happens if the wrong part is in focus?
- How much is the remainder destroyed?
Experiment 2 - Results

- DOF rendering with the EAW framework is less destructive than with Gaussian filtering.
Depth of Field Rendering
Edge-Optimized Wavelets

- Ultra-fast contrast enhancement or smoothing (without artifacts)
- Supports filtering over large distances
- Can be used to improve depth maps
- Direct feedback to the cameraman
- Enhance depth cues due to stereo
- Q: Use as a compact basis for computational learning
Thank you!

Students
Holger Dammertz, Daniel Setws, Johannes Hanika, Christoph Roessing

Cooperation
Daimler AG

