Budgeted Optimization with Concurrent Stochastic-Duration Experiments

Javad Azimi, Alan Fern, Xiaoli Fern
Oregon State University

NIPS 2011
Bayesian Optimization (BO)

Goals: maximize an unknown function f by requesting a small set of function evaluations

- Assume a prior on f is available (e.g. Gaussian Process)

Current Experiments

Posterior Model

Select Experiment(s)

Run Experiment(s)
Problem:
Schedule when to start new experiments and which ones to start.

We consider the following:
- Concurrent experiments (up to l exp. at any time)
- Stochastic exp. durations (known distribution p)
- Experiment budget (total of n experiments)
- Experimental time horizon h
Challenges

Objective 1: complete all n experiments with high prob. within horizon (favors maximizing concurrency)

<table>
<thead>
<tr>
<th>Lab 1</th>
<th>x_1</th>
<th>x_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab 2</td>
<td>x_2</td>
<td>x_5</td>
</tr>
<tr>
<td>Lab 3</td>
<td>x_3</td>
<td>x_6</td>
</tr>
<tr>
<td>Lab 4</td>
<td>x_4</td>
<td>x_7</td>
</tr>
</tbody>
</table>

Objective 2: maximize info. used in selecting each experiment (favors minimizing concurrency)

| x_1 | x_2 | ... | x_n |

We present online and offline approaches that effectively trade off these two conflicting objectives.

Poster #W052