Phase transition in the family of p-resistances

Morteza Alamgir Ulrike von Luxburg

Max Planck Institute for Intelligent Systems
Tübingen, Germany
Resistance distance $R(s, t)$

Consider the electrical network corresponding to a graph.

- **R(s,t)**: The effective resistance between s and t.

$$R(s, t) = \min_i \sum_{e \in E} r_e i_e^2 \quad i = (i_e)_{e \in E} \text{ is a unit } s-t \text{ flow.}$$

Pro: In small graphs, it captures the cluster structure!

- Con: (von Luxburg et al. 2010) In large geometric graphs, it converges to the trivial limit

$$R(s, t) \approx \frac{1}{d_s} + \frac{1}{d_t}$$
How we can cure this problem?

\[p \text{-Resistance}: \text{For } p \geq 1, \text{ define} \]

\[R_p(s, t) := \min_i \sum_{e \text{ edge}} r_e |i_e|^p \]

Theorem (Special cases of } R_p(s, t)\text{)

- **\(p = 1 \)**: Shortest path distance
- **\(p = 2 \)**: Standard resistance distance
- **\(p \to \infty \)**: Related to \(s-t \)-mincut

\[p = 2 \]

\[p = 1.33 \]

\[p = 1.1 \]
Main Theorem:

For **large** random geometric graphs in R^d:

1. If $p < 1 + 1/(d - 1)$, then the “global” contribution dominates the “local” one.
 \[\sim \text{meaningful distance} \]

2. If $p > 1 + 1/(d - 2)$, then all “global” information vanishes.
 \[\sim \text{useless distance} \]