Incompatibilities(?) between PACBayes and Exploration

John Langford (Yahoo! Research)

PAC Bayes Workshop

March 22, 2010
What is a PAC-Bayes bound?

Tightness: Tight sample complexity bounds.

Luckiness: Variable competition based on a prior.

Indifference: You don’t pay for irrelevant decisions.

Basic claim: achieving (2) and (3) are inherently problematic in situations with exploration.
What is a PAC-Bayes bound?

1. Tightness: Tight sample complexity bounds.
What is a PAC-Bayes bound?

1. **Tightness**: Tight sample complexity bounds.
2. **Luckiness**: Variable competition based on a prior.
What is a PAC-Bayes bound?

1. **Tightness**: Tight sample complexity bounds.
2. **Luckiness**: Variable competition based on a prior.
3. **Indifference**: You don’t pay for irrelevant decisions.

Basic claim: achieving (2) and (3) are inherently problematic in situations with exploration.
Outline

1. Supervised Learning and PAC-Bayes Review
2. Active Learning and PAC-Bayes
3. Contextual Bandits and PAC-Bayes
Repeatedly:

1. The world reveals features x.
2. A learning algorithm chooses a label $\hat{y} \in \{0, 1\}$.
3. The world reveals a label $y \in \{0, 1\}$.

Goal: Compete with hypothesis class $H = \{h : X \rightarrow Y\}$.
Typical Algorithm and Theorem

Let $e(h, D) = \Pr_{(x,y) \sim D}(h(x) \neq y)$ and
\[
e(h, S) = \frac{1}{|S|} \sum_{(x,y) \in S} I(h(x) \neq y)\]
Typical Algorithm and Theorem

Let \(e(h, D) = \Pr_{(x,y) \sim D}(h(x) \neq y) \) and
\[
e(h, S) = \frac{1}{|S|} \sum_{(x,y) \in S} I(h(x) \neq y)
\]

Algorithm: ERM

1. Observe \(x \)
2. Let \(h_{\text{min}} = \arg \min_{h \in H} e(h, S) \)
3. return \(\hat{y} = h_{\text{min}}(x) \)

Theorem: For all IID distributions \(D \), for all hypothesis sets \(H \), over \(T \) timesteps with probability 1
\[
e(\arg\min_{S} e(h, D) - e(h^*, D) \leq O\left(\sqrt{\ln |H| + \ln \frac{1}{\delta}} T\right)
\]
where regret = \(e(\arg\min_{S} e(h, D)) - e(h^*, D) \)
Typical Algorithm and Theorem

Let \(e(h, D) = \Pr_{(x,y) \sim D}(h(x) \neq y) \) and
\[
e(h, S) = \frac{1}{|S|} \sum_{(x,y) \in S} I(h(x) \neq y)
\]

Algorithm: ERM

1. Observe \(x \)
2. Let \(h_{\text{min}} = \arg \min_{h \in H} e(h, S) \)
3. return \(\hat{y} = h_{\text{min}}(x) \)

Theorem: For all IID distributions \(D \), for all hypothesis sets \(H \), over \(T \) timesteps with probability \(1 - \delta \)

\[
e(\arg\min_{S} D) - e(h^*, D) \leq O \left(\sqrt{\frac{\ln |H| + \ln \frac{1}{\delta}}{T}} \right)
\]

where \(\text{regret} = e(\arg\min_{S} D) - e(h^*, D) \)
Luckiness and Indifference for Supervised Learning

Luckiness: (Occam’s Razor) For all $D, H, P(h)$, with probability $1 - \delta$:

$$e(\arg\min_S, D) - e(h^*, D) \leq O \left(\sqrt{\ln \frac{1}{P(h^*)} + \ln \frac{1}{\delta}} \right)$$

$$\Rightarrow \text{regret}(H_1 \cup H_2) \leq O(1) + \max\{\text{regret}(H_1), \text{regret}(H_2)\}$$
Luckiness: (Occam’s Razor) For all $D, H, P(h)$, with probability $1 - \delta$:

$$e(\arg\min_S, D) - e(h^*, D) \leq O \left(\sqrt{\frac{\ln \frac{1}{P(h^*)} + \ln \frac{1}{\delta}}{T}} \right)$$

$$\Rightarrow \text{regret}(H_1 \cup H_2) \leq O(1) + \max\{\text{regret}(H_1), \text{regret}(H_2)\}$$

Indifference: (PAC-Bayes) For all D, H, with probability $1 - \delta$ for all $Q(h)$:

$$e(Q, S) - e(Q, D) \leq O \left(\sqrt{\frac{\ln |H| - H(Q) + \ln \frac{1}{\delta}}{T}} \right)$$

Let H_2 consist of h satisfying $e(h, D) = \min_{h' \in H_1} e(h', D)$.

$$\Rightarrow \text{regret}(H_1 \cup H_2) \leq \text{regret}(H_1) \text{ (or less!)}$$
Outline

1. Supervised Learning and PAC-Bayes Review
2. Active Learning and PAC-Bayes
3. Contextual Bandits and PAC-Bayes
Active Learning Setting

Repeatedly:

1. The world reveals features x.
2. A learning algorithm chooses an action $\hat{y} \in \{0, 1\}$.
3. The world reveals a label $y \in \{0, 1\}$ if requested by the algorithm.

Goal: Compete with hypothesis class $H = \{ h : X \rightarrow Y \}$ while minimizing label complexity.
Typical Algorithm and Analysis

Keep track of a version space \(H_S \) which is initially \(H \).

1. Observe an \(x \),
2. Predict according to \(\arg\min_{h \in H_S} e(h, S) \).
3. If \(\exists h, h' \in H_S \) satisfying \(h(x) \neq h'(x) \).
 1. Ask for the label
 2. Use a sample complexity bound to remove all \(h \) provably not optimal from \(H_S \).

Theorem: For all IID distributions \(D \), for all hypothesis sets \(H \), over \(T \) timesteps with probability \(1 - \delta \):

- Active learning regret = \(O(\text{Supervised Regret}) \)
- \# labels \(\leq O\left(\theta \ln |H| (\ln T)(\ln T + \ln \frac{1}{\delta})\right) \)

for \(e(h^*, D) \) small and \(\theta \) = "disagreement coefficient"
Typical Algorithm and Analysis

Keep track of a version space H_S which is initially H.

1. Observe an x,
2. Predict according to $\arg \min_{h \in H_S} e(h, S)$.
3. if $\exists h, h' \in H_S$ satisfying $h(x) \neq h'(x)$.
 1. ask for the label
 2. Use a sample complexity bound to remove all h provably not optimal from H_S.

Theorem: For all IID distributions D, for all hypothesis sets H, over T timesteps with probability $1 - \delta$:

\[
\text{Active learning regret} = O(\text{Supervised Regret})
\]

and

\[
\text{#labels} \leq O(\theta \ln |H|(\ln T)(\ln T + \ln 1/\delta))
\]

for $e(h^*, D)$ small and $\theta = \text{“disagreement coefficient”}$
The disagreement coefficient

Let $H_\epsilon = \{ h \in H : e(h, D) \leq e(h^*, D) + \epsilon \}$

Let $X_\epsilon = \{ x \in X : h(x) \neq h^*(x) \}$

Disagreement coefficient $= \max_\epsilon \frac{D(X_\epsilon)}{\epsilon}$
The disagreement coefficient

Let \(H_\epsilon = \{ h \in H : e(h, D) \leq e(h^*, D) + \epsilon \} \)

Let \(X_\epsilon = \{ x \in X : h(x) \neq h^*(x) \} \)

Disagreement coefficient = \(\max_\epsilon \frac{D(X_\epsilon)}{\epsilon} \)

Two hypotheses \(h_1, h_2 \), any data distribution.
The disagreement coefficient

Let $H_\epsilon = \{ h \in H : e(h, D) \leq e(h^*, D) + \epsilon \}$
Let $X_\epsilon = \{ x \in X : h(x) \neq h^*(x) \}$

Disagreement coefficient $= \max_{\epsilon} \frac{D(X_\epsilon)}{\epsilon}$

Two hypotheses h_1, h_2, any data distribution.

$\theta = 1$.

Thresholds in R, any data distribution.
The disagreement coefficient

Let \(H_\varepsilon = \{ h \in H : e(h, D) \leq e(h^*, D) + \varepsilon \} \)
Let \(X_\varepsilon = \{ x \in X : h(x) \neq h^*(x) \} \)
Disagreement coefficient = \(\max_\varepsilon \frac{D(X_\varepsilon)}{\varepsilon} \)

Two hypotheses \(h_1, h_2 \), any data distribution.
\[\theta = 1. \]

Thresholds in \(R \), any data distribution.
\[\theta = 2. \]

Linear separators through the origin in \(R^d \), uniform data distribution.
The disagreement coefficient

Let $H_\epsilon = \{ h \in H : e(h, D) \leq e(h^*, D) + \epsilon \}$
Let $X_\epsilon = \{ x \in X : h(x) \neq h^*(x) \}$
Disagreement coefficient $= \max_\epsilon \frac{D(X_\epsilon)}{\epsilon}$

Two hypotheses h_1, h_2, any data distribution.

\[\theta = 1. \]

Thresholds in \mathbb{R}, any data distribution.

\[\theta = 2. \]

Linear separators through the origin in \mathbb{R}^d, uniform data distribution.

\[\theta \leq \sqrt{d}. \]
Luckiness and Indifference for Active Learning

Luckiness: ??

\[\theta(H_1 \cup H_2, D) \leq \theta(H_1, D) + \theta(H_2, D) + O(1) \]

When learning on \(H_1 \cup H_2 \) label complexities add in the worst case.

⇒ dealing with a prior is very difficult.

Indifference: ??

Let \(H_2 \) consist of \(h \) satisfying \(e(h, D) = \min_{h' \in H_1} e(h', D) \).

⇒ \(\theta(H_1 \cup H_2, D) \leq \theta(H_1, D) + e(h^*, D) \epsilon |H_2| \)

Extra good hypotheses can hurt.

So, PAC-Bayes appears incompatible with this style of active learning.
Luckiness: ??

$$\theta(H_1 \cup H_2, D) \leq \theta(H_1, D) + \theta(H_2, D) + O(1)$$

When learning on $H_1 \cup H_2$ label complexities add in the worst case. ⇒ dealing with a prior is very difficult.
Luckiness and Indifference for Active Learning

Luckiness: ??

\[\theta(H_1 \cup H_2, D) \leq \theta(H_1, D) + \theta(H_2, D) + O(1) \]

When learning on \(H_1 \cup H_2 \) label complexities add in the worst case. \(\Rightarrow \) dealing with a prior is very difficult.

Indifference: ??

Extra good hypotheses can hurt. So, PAC-Bayes appears incompatible with this style of active learning.
Luckiness: ??

\[\theta(H_1 \cup H_2, D) \leq \theta(H_1, D) + \theta(H_2, D) + O(1) \]
When learning on \(H_1 \cup H_2 \) label complexities add in the worst case.
\[\Rightarrow \] dealing with a prior is very difficult.

Indifference: ??

Let \(H_2 \) consist of \(h \) satisfying \(e(h, D) = \min_{h' \in H_1} e(h', D) \).
\[\Rightarrow \theta(H_1 \cup H_2, D) \leq \theta(H_1, D) + \frac{e(h^*, D)}{\epsilon} |H_2| \]
Extra good hypotheses can hurt.

So, PAC-Bayes appears incompatible with this style of active learning.
Some objections you might have

Cardinal sin! You compare upper bound to upper bound rather than upper bound to lower bound!

Sure, but there are some lower bounds involving disagreement.

Should we care about active learning? The analysis looks rather finicky/loose/unclean.

Lots of people care, empirically.

The theory is starting to yield useful algorithms (see IWAL paper).

Maybe not, but that's why I brought another exploration setting.
Some objections you might have

Cardinal sin! You compare upper bound to upper bound rather than upper bound to lower bound!
Some objections you might have

Cardinal sin! You compare upper bound to upper bound rather than upper bound to lower bound!

Sure, but there are some lower bounds involving disagreement.
Some objections you might have

Cardinal sin! You compare upper bound to upper bound rather than upper bound to lower bound!
Sure, but there are some lower bounds involving disagreement.
Should we care about active learning? The analysis looks rather finicky/loose/unclean.
Some objections you might have

Cardinal sin! You compare upper bound to upper bound rather than upper bound to lower bound!
Sure, but there are some lower bounds involving disagreement.
Should we care about active learning? The analysis looks rather finicky/loose/unclean.

1. Lots of people care, empirically.
2. The theory is starting to yield useful algorithms (see IWAL paper).
3. Maybe not, but that’s why I brought another exploration setting.
Outline

1. Supervised Learning and PAC-Bayes Review
2. Active Learning and PAC-Bayes
3. Contextual Bandits and PAC-Bayes
Repeatedly:

1. The world reveals features x.
2. A learning algorithm chooses an label $\hat{y} \in \{0, 1\}$.
3. The world reveals reward $r \in [0, 1]$ for action a.

Goal: Compete with hypothesis class $H = \{h : X \rightarrow Y\}$.

This setting is very easy to motivate at Y!
Stores that might be closing in 2010
These companies closed a lot of stores in 2009, and are likely to shut more this year.

» Video rental, coffee stores

TRENDING NOW
1. New Orleans Sain...
2. Picasso
3. Avatar
4. Rachael Flatt
5. Robert Mosbacher
6. Joan Jett
7. General Motors
8. Jay Leno
9. Peyton Manning
10. Suncance Film Fe...

Reel time: Latest photos on Yahoo! Movies
‘Tron Legacy’ light cycles

NEWS WORLD LOCAL FINANCE
• Clinton: Haiti exodus requires reassessment of aid strategy
• Obama proposes initiatives aimed at the middle class
• Bombs hit Baghdad hotels, killing 37 | ‘Chemical Ali’ hanged
A Simple Algorithm and theorem

Keep track of instantaneous regret R and observations $S = (x, y, r_y)^*$. Let $e'(h, S) = \sum_{(x, y, r_y, p_y) \in S} 2r_y I(h(x) = y)$.
A Simple Algorithm and theorem

Keep track of instantaneous regret R and observations $S = (x, y, r_y)^*$. Let $e'(h, S) = \sum_{(x, y, r_y, p_y) \in S} 2r_y l(h(x) = y)$.

Algorithm Epoch-Greedy:

1. With probability $1 - R$ predict according to $\arg \min_{h \in H_S} e'(h, S)$.
2. Otherwise choose an action at random.
3. Observe the reward r_y.
4. If the random action was taken, update S and R.

Theorem: For all IID distributions D, for all hypothesis sets H over T timesteps with probability $1 - \delta$ average regret $\leq O\left(\ln |H| + \ln \frac{1}{\delta} T\right)^{1/3}$.

Note: EXP4P is a more complicated algorithm replacing $1/3$ with $1/2$.
A Simple Algorithm and theorem

Keep track of instantaneous regret R and observations $S = (x, y, r_y)^*$. Let $e'(h, S) = \sum_{(x, y, r_y, p_y) \in S} 2r_y I(h(x) = y)$.

Algorithm Epoch-Greedy:
1. With probability $1 - R$ predict according to $\arg\min_{h \in H} e'(h, S)$.
2. Otherwise choose an action at random.
3. Observe the reward r_y.
4. If the random action was taken, update S and R.

Theorem: For all IID distributions D, for all hypothesis sets H, over T timesteps with probability $1 - \delta$

$$\text{average regret} \leq O \left(\left(\frac{\ln |H| + \ln \frac{1}{\delta}}{T} \right)^{1/3} \right)$$

Note: EXP4P is a more complicated algorithm replacing $1/3$ with $1/2$.
The essential idea is to use a sample complexity bound. Any will do. The result comes from applying the sqrt-form Occam’s Razor bound with a uniform prior.
Luckiness: ??

Plugging in a nonuniform prior ⇒ $R \approx \max_h \sqrt{\ln \frac{1}{P(h)}} T$, which is untenable. (Problem is shared by EXP4P.)

In the worst case, average regrets can add when combining two hypothesis spaces.

Indifference: ??

Indifference works out. Let H_2 consist of h satisfying $e'(h, D) = \min_{h' \in H_1} e(h', D)$. Then, the argmin can be replaced by randomization Q over a good set. (Even more clear with EXP4P.)
Luckiness: ??

Plugging in a nonuniform prior $\Rightarrow R \simeq \max_h \sqrt{\frac{\ln 1/P(h)}{T}}$ which is untenable. (Problem is shared by EXP4P.)

In the worst case, average regrets can add when combining two hypothesis spaces.
Plugging in a nonuniform prior $\Rightarrow R \sim \max_h \sqrt{\frac{\ln 1/P(h)}{T}}$ which is untenable. (Problem is shared by EXP4P.) In the worst case, average regrets can add when combining two hypothesis spaces.

Indifference: ??
Luckiness and Indifference for Contextual Bandit

Luckiness: ??

Plugging in a nonuniform prior \(\Rightarrow R \approx \max_h \sqrt{\frac{\ln 1/P(h)}{T}} \) which is untenable. (Problem is shared by EXP4P.) In the worst case, average regrets can add when combining two hypothesis spaces.

Indifference: ??

Indifference works out. Let \(H_2 \) consist of \(h \) satisfying \(e'(h, D) = \min_{h' \in H_1} e(h', D) \). Then, the argmin can be replaced by randomization \(Q \) over a good set. (Even more clear with EXP4P.)
Something has to give in active learning for a PAC-Bayes benefit. Perhaps we need to use unsupervised data as a resource?
Conclusion

Something has to give in active learning for a PAC-Bayes benefit. Perhaps we need to use unsupervised data as a resource?

For Contextual Bandits, indifference may work out ok, but there are substantial problems with luckiness.
Conclusion

Something has to give in active learning for a PAC-Bayes benefit. Perhaps we need to use unsupervised data as a resource?

For Contextual Bandits, indifference may work out ok, but there are substantial problems with luckiness.

More discussion about Active Learning and Exploration at http://hunch.net

