TwitterRank: Finding Topic-sensitive Influential Twitterers

Jianshu Weng, Ee-Peng Lim, Jing Jiang
Singapore Management University
Qi He
Pennsylvania State University

WSDM 2010
Feb 5, 2010
Outline

- Introduction
- Dataset
- Topic Modeling and Homophily among Twitterers
- TwitterRank
- Experiments and Results
- Conclusions and Future Work
Introduction

• Given a set of twitterers, find the influential ones
 - for different topics

• Why the problem?
 - Identify opinion leaders, experts
 - Viral marketing, advertisement

• Challenges:
 - The relationship among twitterers seems to be non-serious
 - Topics unknown
 - Evaluation without ground truth
Outline

• Introduction
• Dataset
• Topic Modeling and Homophily among Twitterers
• TwitterRank
• Experiments and Results
• Conclusions and Future Work
Data preparation

- Crawled $S = \{\text{a set of Singapore-based twitterers from twitterholic.com with highest number of followers}\}$.
- For each $s \in S$, crawled its followers and friends \bar{S}.
- $S' = S \cup \bar{S}$ and $S^* = \{s | s \in S', \text{ and } s \text{ is from Singapore}\}$
- For each $s \in S^*$, get its published tweets. Denote the set of all tweets as \mathcal{T}.

| $|S|$ | 996 |
|--------------|-----|
| $|S^*|$ | 6748(4050 with more than 10 tweets) |
| $|\mathcal{T}|$ | 1,021,039 |
| # following relationships | 49,872 |
| Min/Max/Avg #tweets/twitterer | 1 / 3200 / 179.57 |
Reciprocity in the Following Relationships

- Friend count = # twitterers being followed
- Follower count = # twitterers following
- Correlation between friends count and follower count.
- 72.4% of the users follow more than 80% of their followers.
- 80.5% of the users have 80% of their friends follow them back.
Possible Explanations

- Two possible explanations:
 - “Following” relationship is too casual
 - Homophily, implying a stronger notion.

- Does homophily really exist?
 - Are twitterers with “following” relationships more similar than those without according to the topics they are interested in?
 - Are twitterers with reciprocal “following” relationships more similar than those without according to the topics they are interested in?
Outline

• Introduction
• Dataset
• Topic Modeling and Homophily among Twitterers
• TwitterRank
• Experiments and Results
• Conclusions and Future Work
Topic Distillation

• Apply LDA to distill topics automatically.
• Find topics in the twitterer’s content to represent her interests
 - Twitterer’s content = aggregated tweets
• Pre-processing
 - Use only those words without non-English characters
 - Min word length= 3
 - Remove
 • @userid
 • URL
 • All-digit word
 • Stopwords
 - Apply analysis on twitterers with more than 10 tweets. (#twitterer=4050)
LDA
Results of Topic Distillation

- Three matrices:
 - DT, a $D \times T$ matrix, where D is the number of twitterers and T is the number of topics. DT_{ij} contains the number of times a word in tweets of twitterer s_i has been assigned to topic t_j.
 - WT, a $W \times T$ matrix, where W is the number of unique words used in the tweets and T is the number of topics. WT_{ij} captures the number of times unique word w_i has been assigned to topic t_j.
 - Z, a $1 \times N$ vector, where N is the total number of words in the tweets. Z_i is the topic assignment for word w_i.
Hypothesis testing (I)

- Are twitterers with “following” relationships more similar than those without according to the topics they are interested in?

- Topical difference: \(\sqrt{2 \times D_{JS}(i, j)} \)

- \(\mu_{\text{follow}} \): Mean difference of the pairs with following relationships

- \(\mu_{\text{nofollow}} \): Mean difference of the pairs without following relationships

- \(H_0 : \mu_{\text{follow}} = \mu_{\text{nofollow}} \quad H_1 : \mu_{\text{follow}} < \mu_{\text{nofollow}} \)

- The null hypothesis is rejected at \(\alpha = 0.01 \) for both twitterers with more than/less than 30 friends.
Hypothesis testing (II)

- Are twitterers with reciprocal “following” relationships more similar than those without according to the topics they are interested in?

- μ_{sym}: Mean difference of the pairs of users with reciprocal following relationships

- μ_{asym}: Mean difference of the pairs of users with only one-directional following relationships

- $H_0 : \mu_{\text{sym}} = \mu_{\text{asym}} \quad H_1 : \mu_{\text{sym}} < \mu_{\text{asym}}$

- The null hypothesis is rejected at $\alpha = 0.01$.
Implication

- Homophily phenomenon does exist.
 - Twitterers with “following” relationships are more similar than those without according to the topics they are interested in.
 - Twitterers with reciprocal “following” relationships are more similar than those without according to the topics they are interested in.
 - There are twitterers who are serious in following others.
Outline

• Introduction
• Dataset
• Topic Modeling and Homophily among Twitterers
• TwitterRank
• Experiments and Results
• Conclusions and Future Work
A topic-specific random walk model is applied to calculate each twitterer’s influential score.

The transition matrix for topic t, denoted as P_t. The transition probability of the random surfer from follower s_i to friend s_j:

$$P_t(i, j) = \frac{|\mathcal{T}_j|}{\sum_{a: s_i \text{ follows } s_a} |\mathcal{T}_a|} \times \text{sim}_t(i, j)$$

$$\text{sim}_t(i, j) = 1 - |\text{DT}_{it} - \text{DT}_{jt}|$$

This captures two notions:
- The more s_j publishes, the higher portion of tweets s_i reads is from s_j. Generally, this leads to a higher influence on s_i.
- s_j's influence on s_i is also related to the topical similarity between the two as suggested by the homophily phenomenon.
Topic-specific TwitterRank (II)

• Topic-specific teleportation
 \[E_t = DT_t'' \]

• The influence scores of twitterers are calculated iteratively
 \[TR_t = \gamma P_t \times TR_t + (1 - \gamma) E_t \]
Aggregation of Topic-specific TwitterRank

• $\overrightarrow{T\bar{R}} = \sum_t r_t \cdot \overrightarrow{T\bar{R}}_t$

• General influence: r'_t can be set as the probabilities of different topics' presence

• Perceived general influence: r'_t can also be set as the probabilities that a particular twitterer s_i is interested in different topics.
Outline

• Introduction
• Dataset
• Topic Modeling and Homophily among Twitterers
• TwitterRank
• Experiments and Results
• Conclusions and Future Work
Comparison with Other Algorithms

- Comparison of performance in a recommendation task. Set L is considered the ground truth.

```plaintext
1. randomly choose $|L|$ existing “following” relationship formed among twitterers in $S_u$;
2. foreach $l \in L$ do
3.     let $s_o$ and $s_f$ be the follower and friend in “following” relationship $l$ respectively;
4.     randomly choose 10 twitterers that $s_o$ does not follow, denote this set as $S_l$;
5.     remove $l$ to generate a new network in which twitter $s_o$ does not follow $s_f$;
6.     apply different algorithms to measure the influence of $s_f$ and all the twitterers in $S_o$ in the new network, based on which $s_o$ is recommended whether to “follow” $s_f$;
7.     compare the quality of the recommendation by different algorithms;
end

Figure 8: Recommendation Task for Performance Evaluation and Comparison
The Recommendation Task

A recommendation is considered “good” if $s_f$ is ranked higher than all the twitterers in $S_t$. 

\[ S_t \quad S_o \quad S_f \]
Criteria to generate the $L$ Set

- Number of followers that $s_f$ has.
- Number of tweets that $s_f$ published.
- Topical difference between $s_f$ and $s_o$
- Whether reciprocal relationship exists among $s_f$ and $s_o$
Comparison with Other Algorithms (III)
Major Observations (I)

• All performs better in $L_{ai}$ than in $L_{di}$:
  - There are twitterers who “follow” because of the topical similarity between them and their friends. This supports the phenomenon of *homophily*.

• TR is outperformed in $L_{fh}$, $L_{tl}$, and $L_{dh}$
  - InD performs the best in $L_{fh}$. This is probably because twitterers’ “following” behaviors have already been biased toward those with more followers.
Major Observations (II)

- TR performs the worst in $L_{tl}$, because LDA-based topic distillation needs more contents to achieve reasonable accuracy.

- TR outperforms all the other algorithms except InD in $L_{dh}$. There still exist some twitterers who do not “follow” based on topical similarity, although homophily is observed.
Outline

• Introduction
• Dataset
• Topic Modeling and Homophily among Twitterers
• TwitterRank
• Experiments and Results
• Conclusions and Future Work
Conclusions and Future Work

• Homophily does exist.
  - Not all users just randomly “follows”.

• Future work:
  - To make the algorithm more robust to manipulation, e.g. purposely publish large number of tweets
  - To classify different categories of twitterers by studying their “following” behaviors more closely
  - Incremental topic distillation/event detection
Thank you