Alignment-Based Trust for Resource Finding in Semantic P2P Systems

MANUEL ATENCIA

joint work with JÉRÔME EUZENAT, GIUSEPPE PIRRÒ
and MARIE-CHRISTINE ROUSSET
Introduction

• trust is a central component in the Semantic Web
Introduction

- trust is a central component in the Semantic Web
- why is trust necessary?
Introduction

- trust is a central component in the Semantic Web
- why is trust necessary?
 - Web *motto*: “anyone can say anything about anything”
Introduction

• trust is a central component in the Semantic Web

• why is trust necessary?
 • Web motto: “anyone can say anything about anything”
 • open and dynamic environments: uncertainty of participants’ behaviour, information sources of varying quality
Introduction
Introduction

- some definitions in the literature:
Introduction

• some definitions in the literature:

 • trust is a subjective expectation an agent has about another’s future behaviour based on the history of their encounters [Mui et al.’02]
Introduction

- some definitions in the literature:

 - trust is a subjective expectation an agent has about another’s future behaviour based on the history of their encounters [Mui et al.’02]

 - trust is the firm belief in the competence of an entity to act dependably, securely, and reliably within a specified context [Grandison and Sloman’00]
Introduction

• some definitions in the literature:

 • trust is a **subjective** expectation an agent has about another’s future **behaviour** based on the **history** of their encounters [Mui et al.’02]

 • trust is the firm belief in the **competence** of an entity to act dependably, securely, and reliably within a specified **context** [Grandison and Sloman’00]

 • a unifying theme: trust is worth modelling when there is a possibility of **deception**, that is, when there is a chance of a different outcome than what is expected or has been agreed upon [Artz and Gil’07]
Semantic P2P Networks
Semantic P2P Networks

• peers and connections between peers
Semantic P2P Networks

- peers and connections between peers
• every peer is associated with one populated ontology
Semantic P2P Networks

- every peer is associated with one populated ontology
Populated Ontologies
Populated Ontologies

- populated ontology: $\mathcal{O} = \{O, I, ext\}$
Populated Ontologies

- populated ontology: \(O = \{ O, I, ext \} \)

- an ontology: \(O = \{ C, \leq, \bot \} \)
Populated Ontologies

- populated ontology: \(\mathcal{O} = \{O, I, \text{ext}\} \)
- an ontology: \(O = \{C, \leq, \bot\} \)
- a set of instances: \(I \)
Populated Ontologies

- populated ontology: \(\mathcal{O} = \{ O, I, ext \} \)

- an ontology: \(O = \{ C, \leq, \bot \} \)

- a set of instances: \(I \)

- an extension function: \(ext \)
Populated Ontologies

- populated ontology: $\mathcal{O} = \{O, I, ext\}$
- an ontology: $O = \{C, \leq, \bot\}$
- a set of instances: I
- an extension function: ext

\[
\text{ext}(c) \subseteq I
\]
Populated Ontologies

- populated ontology: \(\mathcal{O} = \{ O, I, ext \} \)
- an ontology: \(O = \{ C, \leq, \bot \} \)
- a set of instances: \(I \)
- an extension function: \(ext \)
 \[ext(c) \subseteq I \]
Populated Ontologies

- populated ontology: \(O = \{O, I, ext\} \)
- an ontology: \(O = \{C, \leq, \perp\} \)
- a set of instances: \(I \)
- an extension function: \(ext \)

\[ext(c) \subseteq I \]
Semantic P2P Networks

\[O_2 \sim P_2 \quad P_5 \sim O_5 \]
\[O_1 \sim P_1 \quad P_3 \sim O_3 \]
\[O_4 \sim P_4 \quad P_6 \sim O_6 \]
Semantic P2P Networks

- different ontologies need to be aligned
Semantic P2P Networks

• different ontologies need to be aligned
Alignments
Alignments

• a more general notion of alignment: algebra of relations [Euzenat08]
Alignments

• a more general notion of alignment: algebra of relations [Euzenat08]
Alignments

• a more general notion of alignment: algebra of relations [Euzenat08]
Alignments

• a more general notion of alignment: algebra of relations [Euzenat08]
Queries and Answers

• peers pose queries to obtain information that concerns others’ populated ontologies
Queries and Answers

- peers pose queries to obtain information that concerns others’ populated ontologies

\[P_i \quad P_j \]
Queries and Answers

- peers pose queries to obtain information that concerns others’ populated ontologies
• peers pose queries to obtain information that concerns others’ populated ontologies

\[P_i \xrightarrow{c(X)\ ?} P_j \]

where \(c \in C_i \), but if \(O_i \neq O_j \) …
Queries and Answers
Queries and Answers

- queries are translated via correspondences of alignments
Queries and Answers

- queries are translated via correspondences of alignments

\[P_i \quad P_j \]
Queries and Answers

- queries are translated via correspondences of alignments

\[A_{ij} \]

\[P_i \quad A_{ij} \quad P_j \]
Queries and Answers

- queries are translated via correspondences of alignments

\[P_i \xrightarrow{c(X)\text{?}} A_{ij} \xrightarrow{} P_j \]
Queries and Answers

- queries are translated via correspondences of alignments

\[A_{ij} \]

\[\langle c, d, R \rangle \]

\[P_i \rightarrow c(X) \]

\[\rightarrow P_j \]

\[\ldots \]
Queries and Answers

- queries are translated via correspondences of alignments

\[A_{ij} \]

\[\langle c, d, R \rangle \]

\[c(X) \]

\[d(X) \]
Queries and Answers
Queries and Answers

• the answer to a query is a set of instances
Queries and Answers

- the answer to a query is a set of instances

\[P_i \quad P_j \]
Queries and Answers

- the answer to a query is a set of instances

\[P_i \xrightarrow{d(X)} P_j \]
Queries and Answers

• the answer to a query is a set of instances

\[
\begin{align*}
\text{d}(X) \? \quad & \quad \text{B} = \text{ext}_j(d) \\
P_i & \xleftrightarrow{} \quad B \quad \xrightarrow{} \quad P_j
\end{align*}
\]
Queries and Answers

• the answer to a query is a set of instances

\[d(X) ? \]

\[P_i \quad \leftrightarrow \quad B = \text{ext}_j(d) \quad \rightarrow \quad P_j \]

• it is assumed that no translation of instances is ever required
the answer to a query is a set of instances

\[d(X) \]

\[P_i \leftrightarrow B = \text{ext}_j(d) \rightarrow P_j \]

it is assumed that no translation of instances is ever required

but it may happen that \(a \in B \) is not considered an instance of \(c \) by \(P_i \): it is an unsatisfactory instance
Towards a Definition of Trust
Towards a Definition of Trust

• the uncertainty about a peer’s answer can be estimated with the help of a trust mechanism
Towards a Definition of Trust

- the uncertainty about a peer’s answer can be estimated with the help of a trust mechanism

- the idea of satisfactory instance is faithfully captured by a reference populated ontology $O^*_i = \langle O_i, I^*_i, ext^*_i \rangle$
Towards a Definition of Trust

- the uncertainty about a peer’s answer can be estimated with the help of a trust mechanism

- the idea of satisfactory instance is faithfully captured by a reference populated ontology \(O_i^* = \langle O_i, I_i^*, ext_i^* \rangle \)

\[a \in B = ext_j^t(d) \text{ is satisfactory iff } a \in ext_i^*(c) \]
Towards a Definition of Trust

• the uncertainty about a peer’s answer can be estimated with the help of a trust mechanism

• the idea of satisfactory instance is faithfully captured by a reference populated ontology \(O_i^* = \langle O_i, I_i^*, ext_i^* \rangle \)

\[
a \in B = ext_j^t(d) \text{ is satisfactory iff } a \in ext_i^*(c)
\]

• it is assumed that \(ext_i(c) = ext_i^0(c) \subseteq ext_i^*(c) \)
Towards a Definition of Trust

• the uncertainty about a peer’s answer can be estimated with the help of a trust mechanism

• the idea of satisfactory instance is faithfully captured by a reference populated ontology $O_i^* = \langle O_i, I_i^*, ext_i^* \rangle$

$$a \in B = ext_t^j(d) \text{ is satisfactory iff } a \in ext_i^*(c)$$

• it is assumed that $ext_i(c) = ext_i^0(c) \subseteq ext_i^*(c)$

• in this way the proportion of satisfactory instances in an answer is the conditional probability $p(ext_i^*(c) | B)$
peers’ class extensions are increased over time
peers’ class extensions are increased over time

\[ext_i(c) = ext_i^0(c) \subseteq ext_i^1(c) \subseteq \ldots \subseteq ext_i^t(c) \subseteq \ldots \]
• peers’ class extensions are increased over time

\[ext_i(c) = ext_i^0(c) \subseteq ext_i^1(c) \subseteq \ldots \subseteq ext_i^t(c) \subseteq \ldots \]

so we have a sequence of populated ontologies
peers’ class extensions are increased over time

\[ext_i(c) = ext_i^0(c) \subseteq ext_i^1(c) \subseteq \ldots \subseteq ext_i^t(c) \subseteq \ldots \]

so we have a sequence of populated ontologies

\[\mathcal{O}_i = \mathcal{O}_i^0, \mathcal{O}_i^1, \ldots, \mathcal{O}_i^t, \ldots \]
peers’ class extensions are increased over time

\[ext_i(c) = ext_i^0(c) \subseteq ext_i^1(c) \subseteq \ldots \subseteq ext_i^t(c) \subseteq \ldots \]

so we have a sequence of populated ontologies

\[O_i = O_i^0, O_i^1, \ldots, O_i^t, \ldots \]

it is assumed that the underlying ontology does not change
peers’ class extensions are increased over time

\[ext_i(c) = ext_i^0(c) \subseteq ext_i^1(c) \subseteq \ldots \subseteq ext_i^t(c) \subseteq \ldots \]

so we have a sequence of populated ontologies

\[O_i = O_i^0, O_i^1, \ldots, O_i^t, \ldots \]

it is assumed that the underlying ontology does not change

but since instances may not be 100% satisfactory, peers are associated with probabilistic populated ontologies
• peers’ class extensions are increased over time

\[ext_i(c) = ext_i^0(c) \subseteq ext_i^1(c) \subseteq \ldots \subseteq ext_i^t(c) \subseteq \ldots \]

so we have a sequence of populated ontologies

\[O_i = O_i^0, O_i^1, \ldots, O_i^t, \ldots \]

it is assumed that the underlying ontology does not change

• but since instances may not be 100% satisfactory, peers are associated with probabilistic populated ontologies

\[\tilde{O}_i = \tilde{O}_i^0, \tilde{O}_i^1, \ldots, \tilde{O}_i^t, \ldots \]
Probabilistic Populated Ontologies
• a probabilistic class extension $\tilde{e}xt^t_i(c)$
• a probabilistic class extension $\tilde{ext}_t(c)$
• a probabilistic class extension $\tilde{ext}_i^t(c)$

\[
A^* \subseteq ext_i^*(c)
\]

\[
p(ext_i^*(c)|A^1) \gtrsim .97
\]
\[
p(ext_i^*(c)|A^2) \gtrsim .90
\]
\[
p(ext_i^*(c)|A^3) \gtrsim .85
\]
\[
p(ext_i^*(c)|A^4) \gtrsim .76
\]
Towards a Definition of Trust
Towards a Definition of Trust

- trust of peer P_i towards peer P_j wrt the translation $\langle c, d \rangle$ at time t
Towards a Definition of Trust

- trust of peer P_i towards peer P_j wrt the translation $\langle c, d \rangle$ at time t

\[
\text{trust}^t(P_i, P_j, \langle c, d \rangle) = \text{def } p(ext_i^*(c)|\text{ext}_j^t(d))
\]
Towards a Definition of Trust

• trust of peer P_i towards peer P_j wrt the translation $\langle c, d \rangle$ at time t

\[
\text{trust}^t(P_i, P_j, \langle c, d \rangle) \overset{\text{def}}{=} p(\text{ext}_i^*(c) | \text{ext}_j^t(d))
\]

• some remarks:
Towards a Definition of Trust

- trust of peer P_i towards peer P_j wrt the translation $\langle c, d \rangle$ at time t

$$trust^t(P_i, P_j, \langle c, d \rangle) =_{def} p(ext^*_i(c) | ext^t_j(d))$$

- some remarks:

 - cheating is not directly addressed: unsatisfactory answers are the result of peers’ incapacity to understand each other
• trust of peer P_i towards peer P_j wrt the translation $\langle c, d \rangle$ at time t

$$trust^t(P_i, P_j, \langle c, d \rangle) =_{def} p(ext_i^*(c) | ext_j^t(d))$$

• some remarks:

• cheating is not directly addressed: unsatisfactory answers are the result of peers’ incapacity to understand each other

• trust depends on time and class translations
Computation of Trust
Computation of Trust

- typically based on two kinds of information sources
 - direct experience
 - witness (third-party) information
Computation of Trust

• typically based on two kinds of information sources
 • direct experience
 • witness (third-party) information

• our approach:
 • exploits the logical structure of ontologies and alignments
 • estimation of probabilities: bayesian inference
Computation of Trust
Computation of Trust

- probability distribution representing peer P_i’s belief about trust
Computation of Trust

- probability distribution representing peer P_i’s belief about trust

\[T^t(P_i, P_j, \langle c, d \rangle) \sim \theta = trust^t(P_i, P_j, \langle c, d \rangle) \]
\[= p(ext^*_i(c)|ext^t_j(d)) \]
Computation of Trust

• probability distribution representing peer P_i’s belief about trust

\[T^t(P_i, P_j, \langle c, d \rangle) \sim \theta = trust^t(P_i, P_j, \langle c, d \rangle) \]

\[= p(ext_i^*(c)|ext_j^t(d)) \]

• bayesian inference: estimation of the parameter of a binomial distribution by means of a family of beta distributions
Computation of Trust

• probability distribution representing peer P_i’s belief about trust

\[
T^t(P_i, P_j, \langle c, d \rangle) \sim \theta = trust^t(P_i, P_j, \langle c, d \rangle) = p(ext_i^*(c) | ext_j^t(d))
\]

• bayesian inference: estimation of the parameter of a binomial distribution by means of a family of beta distributions
Computation of Trust

• probability distribution representing peer P_i’s belief about trust

$$T^t(P_i, P_j, \langle c, d \rangle) \sim \theta = trust^t(P_i, P_j, \langle c, d \rangle) = p(ext^*_t(c)|ext^t_j(d))$$

• bayesian inference: estimation of the parameter of a binomial distribution by means of a family of beta distributions

$$T^t = Beta(\alpha, \beta) \quad \text{sampling on} \quad ext^t_j(d) \quad T^{t+1} = Beta(\alpha + k, \beta + n - k)$$
Computation of Trust
Computation of Trust

- sampling on peer P_j’s answer $ext_j^t(d)$
Computation of Trust

- sampling on peer P_j's answer $ext^t_j(d)$

- automatically by exploiting the logical structure of ontologies
• sampling on peer P_j’s answer $ext_j^t(d)$

• automatically by exploiting the logical structure of ontologies

• calling an oracle (typically the user) as a last resort
Computation of Trust
Computation of Trust

draw an instance from the answer (with replacement)
Computation of Trust

draw an instance from the answer (with replacement)

is it already an instance of the current local populated ontology?
Computation of Trust

draw an instance from the answer (with replacement)

is it already an instance of the current local populated ontology?

YES

does it belong to the set of 100% satisfactory instances of the class c?
Computation of Trust

draw an instance from the answer (with replacement)

is it already an instance of the current local populated ontology?

YES

does it belong to the set of 100% satisfactory instances of the class c?

YES

\[k = k + 1 \]
Computation of Trust

draw an instance from the answer (with replacement)

is it already an instance of the current local populated ontology?

YES

does it belong to the set of 100% satisfactory instances of the class c?

YES

\[k = k + 1 \]

\[n = n + 1 \]
Computation of Trust

draw an instance from the answer (with replacement)

is it already an instance of the current local populated ontology?

YES

does it belong to the set of 100% satisfactory instances of the class c?

YES

\(k = k + 1 \)

\(n = n + 1 \)
Computation of Trust

draw an instance from the answer (with replacement)

is it already an instance of the current local populated ontology?

YES

does it belong to the set of 100\% satisfactory instances of the class c?

YES

$k = k + 1$

NO

does it belong to the set of 100\% satisfactory instances of a class disjoint from c?

n = n + 1
Computation of Trust

draw an instance from the answer (with replacement)

is it already an instance of the current local populated ontology?

YES

does it belong to the set of 100% satisfactory instances of the class c?

YES

$k = k + 1$

NO

does it belong to the set of 100% satisfactory instances of a class disjoint from c?

YES

$n = n + 1$
Computation of Trust

draw an instance from the answer (with replacement)

is it already an instance of the current local populated ontology?

YES

does it belong to the set of 100% satisfactory instances of the class c?

YES

$k = k + 1$

NO

does it belong to the set of 100% satisfactory instances of a class disjoint from c?

YES

$n = n + 1$

NO

...
Computation of Trust

draw an instance from the answer (with replacement)

...
Computation of Trust

draw an instance from the answer (with replacement)

... is oracle's answer positive?

CALL THE ORACLE

is the number of oracle calls \(m \) lower than the threshold?

NO

STOP

YES

\[k = k + 1 \]

\[m = m + 1 \] \[n = n + 1 \]
Computation of Trust
Computation of Trust

• if there is no direct experience: priors are based on alignments
Computation of Trust

• if there is no direct experience: priors are based on alignments

• intended meaning of alignments

\[
R = \{=\} \quad \text{iff} \quad ext_i^*(c) = ext_j^*(d)
\]

\[
R = \{>\} \quad \text{iff} \quad ext_i^*(c) \supset ext_j^*(d)
\]

\[
R = \{<\} \quad \text{iff} \quad ext_i^*(c) \subset ext_j^*(d)
\]

\[
R = \{\perp\} \quad \text{iff} \quad ext_i^*(c) \cap ext_j^*(d) = \emptyset
\]

\[
R = \{\emptyset\} \quad \text{iff} \quad \text{none of the above holds}
\]
• if there is no direct experience: priors are based on alignments
Computation of Trust

• if there is no direct experience: priors are based on alignments

• provided that $\text{ext}_j^t(d) \subseteq \text{ext}_j^*(d)$
Computation of Trust

• if there is no direct experience: priors are based on alignments

• provided that $ext_t^j(d) \subseteq ext^*_j(d)$

if R is ‘$=$’ or ‘$>$’ then $p(ext^*_i(c)|ext^t_j(d)) = 1$

if R is ‘\bot’ then $p(ext^*_i(c)|ext^t_j(d)) = 0$

if R is ‘$<$’ or ‘\triangleright’ then $p(ext^*_i(c)|ext^t_j(d)) \in [0, 1]$
Computation of Trust

- if there is no direct experience: priors are based on alignments
Computation of Trust

- if there is no direct experience: priors are based on alignments

\[\langle c, \{\perp\}, d \rangle \quad \langle c, \{<\}, d \rangle \text{ or } \langle c, \{\emptyset\}, d \rangle \quad \langle c, \{=\}, d \rangle \text{ or } \langle c, \{>\}, d \rangle \]
Computation of Trust

• if there is no direct experience: priors are based on alignments
Computation of Trust

• if there is no direct experience: priors are based on alignments

• if R is not a singleton, relations are taken equiprobable
• if there is no direct experience: priors are based on alignments
Computation of Trust

- if there is no direct experience: priors are based on alignments
Use of Trust
• peer P_i will query peer P_{j_0} through the class d_{j_0} if

$$E(T^t(P_i, P_{j_0}, \langle c, d_{j_0} \rangle)) = \max\{E(T^t(P_i, P_j, \langle c, d_j \rangle))\}$$
• if peer P_i receives $B = ext^t_j(d)$ as an answer to the query “$c(X)$” then B will be (partly) added to $A = ext^t_i(c)$
• if peer P_i receives $B = ext^t_j(d)$ as an answer to the query “$c(X)$”
 then B will be (partly) added to $A = ext^t_i(c)$

• the set B is partitioned into three subsets
• if peer P_i receives $B = ext^t_j(d)$ as an answer to the query “$c(X)$”
then B will be (partly) added to $A = ext^t_i(c)$

• the set B is partitioned into three subsets

$$B = ext^t_j(d) = B^+_\text{aut} \uplus B^-\text{aut} \uplus B^-\text{aut}$$
Update of Probabilistic Populated Ontologies

- if peer P_i receives $B = ext^t_j(d)$ as an answer to the query “$c(X)$”
 then B will be (partly) added to $A = ext^t_i(c)$

- the set B is partitioned into three subsets

$$B = ext^t_j(d) = B^+_\text{aut} \uplus B^-_{\text{aut}} \uplus B_{\text{aut}}$$

then B_{aut} is included with a probability degree based on the previous sampling
• if peer P_i receives $B = ext^t_j(d)$ as an answer to the query "c(X)"
 then B will be (partly) added to $A = ext^t_i(c)$

• the set B is partitioned into three subsets

$$B = ext^t_j(d) = B^+_{aut} \cup B^-_{aut} \cup B^\bot_{aut}$$

then B^\bot_{aut} is included with a probability degree based on the
previous sampling

• it has to be included to any superclass of c
Experimentation
Experimentation

• research questions:
Experimentation

• research questions:

 • do trust values converge as more queries are sent and answers received?
Experimentation

• research questions:

 • do trust values converge as more queries are sent and answers received?

 • is there any gain in query-answering performance -measured in precision and recall- when peers make use of trust?
Experimentation

- research questions:
 - do trust values converge as more queries are sent and answers received?
 - is there any gain in query-answering performance -measured in precision and recall- when peers make use of trust?
 - for this we compared the use of trust with a naive strategy
Experimentation

• research questions:

• do trust values converge as more queries are sent and answers received?

• is there any gain in query-answering performance -measured in precision and recall- when peers make use of trust?

• for this we compared the use of trust with a naive strategy

• precision and recall are defined by

\[P(n) = \frac{|ext^*_i(c) \cap ext^n_i(c)|}{|ext^n_i(c)|} \quad R(n) = \frac{|ext^*_i(c) \cap ext^n_i(c)|}{|ext^*_i(c)|} \]
Experimental Setting
Experimental Setting

• generation of a network of 20 peers with a small-world topology
Experimental Setting

- generation of a network of 20 peers with a small-world topology
- reference and initial populated ontologies:
Experimental Setting

• generation of a network of 20 peers with a small-world topology

• reference and initial populated ontologies:
 • the same ontological schema (64 classes)
Experimental Setting

- generation of a network of 20 peers with a small-world topology
- reference and initial populated ontologies:
 - the same ontological schema (64 classes)
 - distribution of a set of instances among the peers (6000 instances) using a Zipfian distribution so that the ontological axioms are fulfilled
Experimental Setting

• generation of a network of 20 peers with a small-world topology

• reference and initial populated ontologies:
 • the same ontological schema (64 classes)
 • distribution of a set of instances among the peers (6000 instances) using a Zipfian distribution so that the ontological axioms are fulfilled

• reference and initial alignments:
Experimental Setting

• generation of a network of 20 peers with a small-world topology

• reference and initial populated ontologies:
 • the same ontological schema (64 classes)
 • distribution of a set of instances among the peers (6000 instances) using a Zipfian distribution so that the ontological axioms are fulfilled

• reference and initial alignments:
 • reference alignments computed from the reference populated ontologies
Experimental Setting

- generation of a network of 20 peers with a small-world topology
- reference and initial populated ontologies:
 - the same ontological schema (64 classes)
 - distribution of a set of instances among the peers (6000 instances) using a Zipfian distribution so that the ontological axioms are fulfilled
- reference and initial alignments:
 - reference alignments computed from the reference populated ontologies
 - initial alignments computed by randomly declining the reference ones (precision and recall equal to 0.6)
Execution and Evaluation
Execution and Evaluation

- 15 peers and 25 classes were randomly chosen
Execution and Evaluation

- 15 peers and 25 classes were randomly chosen
- 100 simulations
Execution and Evaluation

- 15 peers and 25 classes were randomly chosen
- 100 simulations
 - the maximum number of oracle calls was 40
Execution and Evaluation

• 15 peers and 25 classes were randomly chosen
• 100 simulations
 • the maximum number of oracle calls was 40
 • the trust threshold to accept an answer was 0.6
Experimental Results: Convergence

The graph shows the convergence of different rounds (q1 to q10) plotted against the Delta value on the y-axis and Round on the x-axis. The data points indicate a decrease in Delta as the rounds progress, suggesting a convergent trend.
Experimental Results: Precision

![Precision Chart]

Tuesday, October 25, 2011
Experimental Results: Recall
Conclusions and Further Work

• trust mechanism
 • convergence of trust values
 • gain in query-answering performance (precision and recall)

• by-product: probabilistic populated ontologies

• trust versus alignment: “two sides of the same coin”

• future work
 • more expressive ontology and query languages
 • witness information