Large Scale Fuzzy pD^* Reasoning using MapReduce

Chang Liu¹, Guilin Qi², Haofen Wang¹, Yong Yu¹
¹Shanghai Jiao Tong University
²Southeast University, China
Agenda

• Motivation
• Background knowledge
• Challenges and solutions
• Experiment result
• Conclusion and future work
Motivation

- There is a large amount of uncertain semantic data on the web

- We have proposed fuzzy pD^* semantics to represent the uncertain information in the Web
 - No efficient reasoning algorithm for fuzzy pD^* semantics

- MapReduce has been proved to be an efficient framework to do pD^* reasoning

- Can we apply MapReduce framework to deal with large scale fuzzy semantic data?
Background knowledge: fuzzy pD^* semantics

• Fuzzy Logic
 – A fuzzy statement is in form of $\phi[n]$
 • ϕ is a statement
 • n is called the fuzzy degree ($n \in [0,1]$)
 – T-norm operator
 • Lukasiewicz Logic
 \[a \otimes b = \max(a + b - 1, 0) \]
 • Godel Logic
 \[a \otimes b = \min(a, b) \]
 • Product Logic
 \[a \otimes b = a \cdot b \]

• Fuzzy RDF triple
 – (Tom, like, pizza)[0.8]
Background knowledge: fuzzy pD^* rules

- **Fuzzy D^* rule**
 - E.g. rule f-rdfs2:
 - $(p, \text{domain}, u)[n], (v, p, w)[m] \Rightarrow (v, \text{type}, u)[n \otimes m]$

- **Fuzzy P rules**
 - E.g. rule f-rdfsp4
 - $(p, \text{type}, \text{TransitiveProperty})[n], (a, p, b)[m], (b, p, c)[k] \Rightarrow (a, p, c)[n \otimes m \otimes k]$

- **Best Degree Bound**
 - $(a, \text{type}, u)[0.5], (a, p, b)[0.9], (p, \text{domain}, u)[1]$
 - Since $(a, p, b)[0.9], (p, \text{domain}, u)[1] \Rightarrow (a, \text{type}, u)[0.9]$
 - The BDB of (a, type, u) is 0.9
Challenges

• Ordering the rule applications
 – Bad orders will generate more non-BDB fuzzy triples

• The shortest path calculation
 – Some rules essentially calculates the all-pair shortest paths

• Sameas rules
 – Canonical representation technique is not applicable to handle the semantics of vague sameas triples
Ordering the rule applications

Control flow of the reasoning algorithms

Applying fuzzy D^* rules

New fuzzy triples derived?

Applying fuzzy P rules

New fuzzy triples derived?
Ordering the rule applications (cont’d)

- Applying fuzzy D^* rules
 - 1. Property Hierarchy
 - EquivalentProperty rules
 - 2. Domain and range rules
 - 3. Class Hierarchy
 - EquivalentClass rules
 - 4. Other rules
Ordering the rule applications (cont’d)

• Applying fuzzy P rules
 – Non recursive rules
 – Transitive rule
 – Sameas rules
 – hasValue, someValuesFrom and allValuesFrom rules
Shortest path calculation

- Some rules are essentially calculating the shortest path between instances in the fuzzy RDF graph

- Class and property hierarchy rules
 - E.g. rule f-rdfs11,
 \[(u, \text{subClassOf}, v)[n], (v, \text{subClassOf}, w)[m] \Rightarrow (u, \text{subClassOf}, w)[n \otimes m]\]

- Transitive property rules
 - Rule f-rdfp4,
 \[(p, \text{type}, \text{TransitiveProperty})[l], (a, p, b)[n], (b, p, c)[m] \Rightarrow (a, p, c)[n \otimes m \otimes l]\]
Shortest path calculation: Class and Property Hierarchy

• Loading all schema triples into the memory
 – Use edge matrix \(w(u, v) \) to represent there is a fuzzy triple \((u, \text{subClassOf}, v)[n] \)

• Use a Floyd-Warshall style algorithm to compute the closures of class hierarchy and property hierarchy
 – \(O(|N|^3) \) computational complexity
 – Optimize the algorithm by ignoring the zero \(w(u, v) \)

• EquivalentClass and EquivalentProperty
 – If \((u, \text{equivalentClass}, v)[n] \) exists, set \(w(u, v) \) to be \(\max(w(u, v), n) \)
 – Emit \((u, \text{equivalentClass}, v)[w(u, v)] \) and \((v, \text{equivalentClass}, w)[w(u, v)] \)
Shortest path calculation: Transitive Property

• The whole instance graph is too large to be loaded into memory
 – Employ MapReduce programs to calculate the closure
 – The essential problem is a variant of the all-pairs shortest path calculation

• An iterative algorithm
 – Load the schema triple \((p, \text{type}, \text{TransitiveProperty})[k]\) into memory
 – Compute the join \((a, p, b)[n]\) and \((b, p, c)[m]\)
 – The algorithm halts if no new triples are derived and no BDBs are updated
 – There will be at most \(O(\log N)\) iterations, where \(N\) is the number of all instances
Sameas rules

- Traditional Method
 - Canonical representation
- Drawback
 - Vague sameas triples
 - \((a, \text{sameas}, b)[0.8] (b, \text{sameas}, c)[0.1] (c, \text{sameas}, d)[0.8]\)
 - \((a, \text{range}, r)[0.9] (u, b, v)[0.9] (c, \text{domain}, e)[1] (u', d, v')[0.9]\)
- There is no canonical representation!
 - If we choose \(c\) as the representation
 - the RDF graph will be converted into
 - \((c, \text{range}, r)[0.1] (u, c, v)[0.1] (c, \text{domain}, e)[1] (u', c, v')[0.8]\)
 - The BDB of \((v, \text{type}, r)\) is 0.1
 - However the BDB of \((v, \text{type}, r)\) in the original graph is 0.8
Sameas rules (cont’d)

• Handle sameas triples
 – Use canonical representation to remove all certain sameas triples
 – Calculate the closure for vague sameas triples
 – Revise the MapReduce algorithms for each rule, to consider the sameas triples
Sameas rules (cont’d)

The original MapReduce program for rule f-rdfs2

\[(s, p, o)[n]\] map \{p, (L, s, n)\}

\[(p, \text{domain}, u)[m]\] map \{p, (R, u, m)\}

reducer

emit

\[(s, \text{type}, u)[n \otimes m]\]
Sameas rules (cont’d)

The revised MapReduce program for rule f-rdfs2

\[(p, \text{sameas}, p')[k]\]

\[(s, p, o)[n]\] map \[\{p', (L, s, n \times k)\}\]

\[\{p', (R, u, m)\}\] map \[
\]

 reducers

\[(s, \text{type}, u)[n \times k \times m]\]
Experiment setup

• Dataset
 – fpdLUBM 1000, 2000, 4000, 8000

• Cluster
 – 25 machine with 75 mapper/reducer slots
Experiment result

Experimental results of FuzzyPD and WebPIE

<table>
<thead>
<tr>
<th>Number of Universities</th>
<th>Time of FuzzyPD (minutes)</th>
<th>Time of WebPIE (minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>38.8</td>
<td>41.32</td>
</tr>
<tr>
<td>2000</td>
<td>66.97</td>
<td>74.57</td>
</tr>
<tr>
<td>4000</td>
<td>110.40</td>
<td>130.87</td>
</tr>
<tr>
<td>8000</td>
<td>215.48</td>
<td>210.01</td>
</tr>
</tbody>
</table>
Experiment result (cont’d)

Scalability over number of units

<table>
<thead>
<tr>
<th>Number of units</th>
<th>Time (minutes)</th>
<th>Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>128</td>
<td>38.80</td>
<td>4.01</td>
</tr>
<tr>
<td>64</td>
<td>53.15</td>
<td>2.93</td>
</tr>
<tr>
<td>32</td>
<td>91.58</td>
<td>1.70</td>
</tr>
<tr>
<td>16</td>
<td>155.47</td>
<td>1.00</td>
</tr>
</tbody>
</table>
Experiment result (cont’d)

Scalability over number of units

![Graph showing scalability over number of units]
Experiment result (cont’d)

Scalability over data volume

<table>
<thead>
<tr>
<th>Number of universities</th>
<th>Input (Mtriples)</th>
<th>Output (Mtriples)</th>
<th>Time (minutes)</th>
<th>Throughput (Ktriples/second)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>155.51</td>
<td>92.01</td>
<td>38.8</td>
<td>39.52</td>
</tr>
<tr>
<td>2000</td>
<td>310.71</td>
<td>185.97</td>
<td>66.97</td>
<td>46.28</td>
</tr>
<tr>
<td>4000</td>
<td>621.46</td>
<td>380.06</td>
<td>110.40</td>
<td>57.37</td>
</tr>
<tr>
<td>8000</td>
<td>1243.20</td>
<td>792.54</td>
<td>215.50</td>
<td>61.29</td>
</tr>
</tbody>
</table>
Conclusion

• Conclusion
 – This is the first reasoning engine considering fuzzy pD^* semantics
 – Identify the unique challenges to build efficient fuzzy pD^* reasoning engine and work out the solutions for these challenges
 – The experiment results show that our engine is comparable with the state-of-the-art crisp pD^* reasoning engine WebPIE
 – The scalability is good in both the dimensions of machines and data volume

• Future work
 – Extends the current engine to support fuzzy OWL 2 RL semantics
 – Apply the methods to handle other annotations
THANK YOU