Why Does Unsupervised Pre-training Help Deep Discriminant Learning?

*University of Montreal +Google
Why Does Unsupervised Pre-training Help Deep Discriminant Learning?

*University of Montreal +Google
Unsupervised pre-training

- Why deep? Brains, ideas, efficiency, statistical strengths.
- < 2006, fully-connected deep networks not popular.
- > 2006, Hinton et al.: use unsupervised pre-training with Restricted Boltzman Machines for initialization.
- It works: vision, NLP, speech, etc.
- Crucial ingredient is unsupervised initialization: RBMs, auto-encoders, even kernel PCAs (Cho & Saul @ NIPS ’09).
- Widely applied, but well-understood?
Why does it work so well?

- **Plan:**
 - i. propose explanatory hypotheses
 - ii. observe the effects of pre-training
 - iii. infer its role & level of agreement with our hypotheses.

- **Regularization** hypothesis:
 - Unsupervised component constrains the network to model \(P(x) \)
 - \(P(x) \) representations good for \(P(y|x) \).

- **Optimization** hypothesis:
 - Unsupervised initialization near better local minimum of \(P(y|x) \)
 - Reach lower local minimum not achievable by random initialization.
Errors over time

- Pre-training = better generalization for the same training error

- Worse training error, even at the end

- A regularization interpretation fits well.
Varying the layer size

- Pre-training + small layer size = worse than randomly initialized nets
- Additional capacity argument
- Supports a **regularization** explanation.
Trajectories in function space

Projecting network outputs (number of test examples x number of top layer units) into 2D:

- Neural networks pretrained using unsupervised learning
- A single network, several epochs
- 50 networks after one epoch of supervised training
- Standard neural networks

\textbf{t-SNE} \textit{(van der Maaten & Hinton '08)}

- Many apparent local minima

\textbf{Isomap} \textit{(Tenenbaum, de Silva & Langford '00)}

- Disjoint regions of space
The role of pre-training

- Pre-training places the networks in a region of the parameter space that is very different from the one given by random initialization.

- Effect of a unique kind of regularizer: one that restricts and influences positively the starting point of supervised optimization.

- Will the pre-training effect disappear in a large-scale (online) learning scenario?
The online learning scenario

- 10 million examples; (smoothed) online error.

- Pre-training advantage does not vanish as dataset size increases.

- Starting point of non-convex optimization clearly matters, even in a scenario with essentially unbounded training data.

Surprising as it shows that pre-training does not follow the standard interpretation of a regularizer.
Effect of example ordering

- Online, stochastic, non-convex.

- What is the effect of examples seen at different points during training on the outcome?

- Vary only the 1st one million examples, only the 2nd million, etc.

- Measure the variance of the output at the end of training on a fixed test set:
 - Early examples influence more
 - Pre-training = variance reduction
Effect of example ordering

- Online, stochastic, non-convex.

- What is the effect of examples seen at different points during training on the outcome?

- Vary only the 1st one million examples, only the 2nd million, etc.

- Measure the variance of the output at the end of training on a fixed test set:
 - Early examples influence more
 - Pre-training = variance reduction

Variance at the onset of supervised training is lower for pre-trained networks.
Dynamics of unsupervised pre-training initialization

- As weights become larger, they get trapped in a basin of attraction ("quadrant" does not change)
- Initial updates have a crucial influence ("critical period"), explain more of the variance
- Unsupervised pre-training initializes in basin of attraction with good generalization properties
Discussion & take-home

• Early results had pointed towards a regularization hypothesis; we suggest a more nuanced interpretation.

• Explored the online setting and found surprising results: pre-training effect does not vanish.

• Pre-training: variance reduction technique.

• Positive effect as long as modelling $P(x)$ is useful for $P(y|x)$.

• Influence of early examples could be troublesome.

• Future: understand other semi-supervised deep approaches.

• More results & discussion in our upcoming JMLR paper!
Thank you!
Questions? Comments?