Reasoning with Inconsistent Knowledge

This material with Zhisheng Huang & Annette ten Teije
Knowledge will be inconsistent

Because of:

- mistreatment of defaults
- polysemy
- migration from another formalism
- integration of multiple sources

(“Semantic Web as a wake-up call for KR”)
New formal notions are needed

New notions:

- **Accepted:** \(T \models \phi \) and \(T \not\models \neg \phi \)
- **Rejected:** \(T \not\models \phi \) and \(T \models \neg \phi \)
- **Overdetermined:** \(T \models \phi \) and \(T \models \neg \phi \)
- **Undetermined:** \(T \not\models \phi \) and \(T \not\models \neg \phi \)

Soundness: (only classically justified results)

\[T \models \phi \Rightarrow (\exists T' \subseteq T)(T' \not\models \bot \text{ and } T' \models \phi) \]

Meaningful: (sound & never overdetermined)

soundness + \(T \models \phi \Rightarrow T \not\models \neg \phi \)
General framework

Use selection function \(s(T,\phi,k) \), with \(s(T,\phi,k) \subseteq s(T,\phi,k+1) \)

1. Start with \(k=0 \):
 \(s(T,\phi,0) \models \phi \) or \(s(T,\phi,0) \models \neg \phi \) ?

2. Increase \(k \), until
 \(s(T,\phi,k) \models \phi \) or \(s(T,\phi,k) \models \neg \phi \)

3. Abort when
 - undetermined at maximal \(k \)
 - overdetermined at some \(k \)
General Framework

\[T \models \phi \]
\[T \models \neg \phi \]

\[s(T, \phi, 2) \]
Nice general framework, but...

- which selection function $s(T,\phi,k)$ to use?
- Simple option: **syntactic distance**
 - put all formulae in clausal form:

 \[
 a_1 \land a_2 \land \ldots \land a_n
 \]

 - **distance $k=1$** if some clausal letters overlap

 \[
 a_1 \land X \land \ldots \land a_n, \quad b_1 \land \ldots \land X \land b_n
 \]

 - **distance k** if chain of k overlapping clauses are needed

 \[
 a_1 \land X \land \ldots \land X_1 \land a_n \\
 b_1 \land X_1 \land \ldots \land X_2 \land b_n \\
 \ldots \\
 \tilde{c}_1 \land X_k \land \ldots \land \ldots \land \land \land \land c_n
 \]
Works surprisingly well

Almost all answers are “intuitive”

- Not well understood why
- Hypothesis:
 - due to local structure of knowledge
- Currently experimenting with more informed selection function $s(T,\phi,k)$
Other approaches:

- Debugging a knowledge base ("don’t live with it, but find the cause")
 - finding the “cause” of the inconsistency
 - = find the smallest set of axioms that, when removed, fix the inconsistency

- Applying belief revision ("don’t just find the cause, but repair it")