Methodology and applications of MRI with hyperpolarized C-13 and He-3 contrast agents

Sean B. Fain, PhD
Associate Professor of Medical Physics,
University of Wisconsin - Madison
Disclosures

• Hyperpolarized gases and 1^{-13}C Pyruvate are categorized by the FDA as investigational new drugs

• Consultant and Grantee of GE Healthcare, owner of the IP for the medical use of DNP and SEOP polarized agents
Outline

• Background
 – Hyperpolarization
 – Consequences

• Spin relaxation mechanisms
 – T1 relaxation mechanisms
 • Hyperpolarized Noble Gases
 • Hyperpolarized 13C Metabolites

• Correcting/exploiting signal decay mechanisms for imaging
 – Flip angle decay and correction
 – Oxygen induced decay and mapping
 – Diffusion signal decay
 – 13C compounds and metabolic imaging
Severe Gas Trapping in Asthma Subject

FEV1%pred = 94
RV/TLC = 0.27
(TLC - FVC) / TLC = 0.30

Gas trapping on MRI: left upper, lower lobe
right lower lobe

Abnormal MDCT: left upper, lower lobe
right upper, lower lobe

Ventilation defect score = 29
Tissue Susceptibility in the Lungs

\[\frac{1}{T_2} \propto \eta \cdot \gamma \cdot \Delta \chi \cdot B_0 \]

\[\eta = 1 - \frac{\rho_{\text{lung}}}{\rho_{\text{tissue}}} \]
Collaborations

- Department of Neurosurgery
 - Dr. Paul Clark
 - Tumor initiation by cancer stem cells isolated from glioblastoma multiforme
 - 22 CSC-LAP resistant (P4) MG1

Cage 1, Ear 1
T2 only, 1-5-2011
(2 weeks post-injection)

Injected 12-15-2010, MRI (T1-Gd enhanced) 2-8-2011
P4, 2x10^5 cells injected
Spectroscopic Imaging in Brain Glioma Model

Reference Pyruvate Lactate Lactate/Pyruvate
Fig. 4. (A) 13C spectrum of urea (natural abundance 13C) hyper polarized by the DNP-NMR method. The concentration of urea was 59.6 mM, and the polarization was 20%. (B) Thermal equilibrium spectrum of the same sample at 9.4 T and room temperature. This spectrum is acquired under Ernst-angle conditions (pulse angle of 13.5° and repetition time of 1 s based on a T_1 of 60 s) with full 1H decoupling. The signal is averaged during 65 h (232,128 transients).

Golman et al. 2001
Hyperpolarization vs. Equilibrium Processes

• Definition of Polarization

\[P_N = \frac{|N_+ - N_-|}{N_+ + N_-} = \frac{|N_+ - N_-|}{N} \]

• Polarization due to Boltzmann distribution for thermal equilibrium:

\[P_B = \tanh \left(\frac{\gamma \hbar B_0}{2 k_B T} \right) \]

“Brute Force”:
- Increase field strength
- Increase N,
- Decrease T

Imaging of H-1
\[P_N = P_{\text{Boltz}} \sim 10^{-6} \]

Increase polarization externally
Hyperpolarization Physics

- Increases net polarization up to 100,000 times thermal equilibrium
- Multiple approaches
 - Noble gas
 - Metastability exchange
 - Spin exchange optical pumping
 - Solid-State
 - Para-hydrogen induced polarization (PHIP)
 - Dynamic nuclear polarization (DNP)
Nuclear Magnetic Dipole Moment

Hydrogen

Helium

Helium-3
Polarized Gases: ^3He or ^{129}Xe

Spin-exchange optical pumping

- **Cell Pressure:** 8 Atm
- **Cell Temperature:** ~160 °C
- **Laser Power:** ~40 W
- **Polarization:** 1-1.5 Liters @ 30-40% polarization in 18 hours

Walker and Happer, Reviews in Modern Physics, 1997
Spin-exchange optical pumping

Optical Pumping on Rb

Collisional Mixing

$m_J = -1/2$ $m_J = 1/2$

$2R_p$

50%

$m_S = -1/2$ $m_S = 1/2$

$2S_{1/2}$

Quenching by N_2

Polarization Transfer

$H_a = A_a \mathbf{I}_a \cdot \mathbf{S} + g_s \mu_B S_z B_0 - \frac{\mu_a}{I_a} I_{ac} B_0$

Walker and Happer, Reviews in Modern Physics, 1997

Polarized Gases: 3He or 129Xe
Dynamic Nuclear Polarization (DNP): Solid State Hyperpolarization

- Hyperpolarization
 - Electron Polarization
 - $P_e = 92\%$ at $\sim 1.4K$
 - ^{13}C nuclei are very poorly polarized.
 - $^{13}C : P_c = < 0.06\%$ @ 1.4K, 3.35T
 - Irradiation at ESR freq ~ 94GHz (100mW)
- Carbon Polarization
 - $P_c = 20\text{-}30\%$

Ardenkær-Larsen et al. 2003
Dynamic Nuclear Polarization (DNP)

Coupled Energy States

Absorbance for Microwave Frequency Sweep

Farrar et al., Journal of Magnetic Resonance, 2000
DNP is versatile

- Can polarize $^{15}\text{N$, }^{1}\text{H, }^{13}\text{C}$
- Variety of ^{13}C-labelled compounds:
 - ^{13}C Urea
 - $^{13}\text{C}_1$ Pyruvate, $^{13}\text{C}_2$ Pyruvate
 - $^{13}\text{C}_{1,4}$ Succinate
 - ^{13}C Bicarbonate...
Prototype Commercial SEOP System at UW-Madison

Vessel Containing He-3

Syringe System

HeliSpin, GE Healthcare
Prototype DNP System

- 3.35 Tesla, ~1.4 Kelvin, ~94 GHz irradiation, e^- donor

- Rapidly warmed from 1.4K (dissolution) to 37°C
 - 30µl warmed using 4ml EDTA solution
 - Injected intravenously
Xenon-129 Polarizer Technology

- Fully automated operation with on-board diagnostics and data logging
- 50% polarization of two liters into four bags every twenty minutes
- Fast-track for FDA approval
Outline

• **Background**
 – Hyperpolarization
 – Consequences

• **Spin relaxation mechanisms**
 – T1 relaxation mechanisms
 • Hyperpolarized Noble Gases
 • Hyperpolarized 13C Metabolites

• **Correcting/exploiting signal decay mechanisms for imaging**
 – Flip angle decay and correction
 – Oxygen induced decay and mapping
 – Diffusion signal decay
 – 13C compounds and metabolic imaging
Classical Model of MRI: Magnetic Moments

Evolution of “ensemble” signal governed by T1 and T2 Relaxation
T1 Decay of Hyperpolarized Agents

- Non-equilibrium signal decays away at rate $1/T_1$
 - Not generated by the principal field, B_0 so signal to noise is largely independent of B_0
 - Once consumed, polarization does not recover
T1 Decay for Polarized Agents

After $t = T_1$, Signal is $\sim 37\%$

After $t = 2T_1$, Signal is $\sim 14\%$

Decay: $M_z(t) = M_{z,eq} e^{-kt/T_1}$

Recovery: $M_z(t) = M_{z,eq} (1 - e^{-t/T_1})$
T1 and T2 Decay in HP Gases

- T1 for 3He and 129Xe gas in the lungs is 20-30 s
 - Collisional interactions with O$_2$ (paramagnetic)

- Effective T2 shortened by diffusion and local susceptibility
Longitudinal Signal Decay

\[M_z(n, \alpha) = M_o \cos^n(\alpha) \exp \left(-\frac{1}{\xi} \int_0^{nTR} \Gamma_{pO_2}(t) \, dt' \right) \]

\(n \) is the number of rf-pulses applied with flip angle \(\alpha \) and repetition time TR

\(\xi = 2.6 \text{ bar-s} \), and \(\Gamma_{pO_2} \) is the relaxation rate due to local pO\textsubscript{2}
T1 and T2 Decay in HP 13C Metabolites

- T1 varies widely depending on location in the molecule
 - Primarily dipole-dipole interactions*
 - Proximity to bound nuclei with magnetic moments shortens T1
 - Carbonyl, carboxyl or quaternary carbon positions (fumeric and pyruvic acid)
 - Deuterons

- T2 long in liquid state \sim4s

Where to 13C Label?

Example: Acetaminophen

<table>
<thead>
<tr>
<th>Carbon atom</th>
<th>T1 (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30.11 ± 2.41</td>
</tr>
<tr>
<td>2, 6</td>
<td>3.20 ± 0.14</td>
</tr>
<tr>
<td>3, 5</td>
<td>3.04 ± 0.14</td>
</tr>
<tr>
<td>4</td>
<td>26.77 ± 2.40</td>
</tr>
<tr>
<td>7</td>
<td>37.44 ± 4.85</td>
</tr>
<tr>
<td>8</td>
<td>6.86 ± 1.46</td>
</tr>
</tbody>
</table>
Outline

• Background
 – Hyperpolarization
 – Consequences

• Spin relaxation mechanisms
 – T1 relaxation mechanisms
 • Hyperpolarized Noble Gases
 • Hyperpolarized 13C Metabolites

• Correcting/exploiting signal decay mechanisms for imaging
 – Flip angle decay and correction
 – Oxygen induced decay and mapping
 – Diffusion signal decay
 – 13C compounds and metabolic imaging
Signal Decay Due to RF, Flip Angle

The graph shows the signal decay due to RF and flip angle over TR (time to repetition). The y-axis represents the signal intensity, ranging from 0 to 1000, and the x-axis represents TR ranging from 8 to 56. Two curves are plotted, one for 5° flip angle and another for 15° flip angle. The signal decreases as TR increases, indicating the decay effect of RF and flip angle on the signal intensity.
Impact on Resolution

Centric acquisitions in Rat Lungs

5 degrees

15 degrees
k-Space Acquisition

Phase
Encode

Sampled
Signal

DAQ

One line of k-space acquired per TR

Phase Direction

Frequency Direction
k-Space Signal
Flip angle optimization

Sample Times (s): 0.0, 3.6, 15.6, 43.9
Flip Angles (deg): 21.9, 34.2, 49.8, 90.0

<table>
<thead>
<tr>
<th>1D</th>
<th>2D 'equivalent'</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.9°</td>
<td>5.54°</td>
</tr>
<tr>
<td>34.2°</td>
<td>8.80°</td>
</tr>
<tr>
<td>49.8°</td>
<td>13.34°</td>
</tr>
<tr>
<td>90.0°</td>
<td>54.39°</td>
</tr>
</tbody>
</table>

Pyr

Lac
Variable Flip Angle

Increase the flip angle with TR:

- Current TR index, \(i \)
- \(N \) total TR’s

\[
\alpha_i = \text{atan}\left(\frac{1}{\sqrt{N-i}}\right)
\]

Outline

• Background
 – Hyperpolarization
 – Consequences

• Spin relaxation mechanisms
 – T1 relaxation mechanisms
 • Hyperpolarized Noble Gases
 • Hyperpolarized 13C Metabolites

• Correcting/exploiting signal decay mechanisms for imaging
 – Flip angle decay and correction
 – Oxygen induced decay and mapping
 – Diffusion signal decay
 – 13C compounds and metabolic imaging
HP He-3 MRI in Healthy Normal

Conventional MRI

He-3 MRI
Longitudinal Signal Decay

\[
M_z(n, \alpha) = M_o \cos^n(\alpha) \exp\left(\frac{-1}{\xi} \int_0^{nTR} \Gamma pO_2(t) dt'\right)
\]

Depolarization due to intermolecular interactions between O\textsubscript{2} and 3He:

Decay constant: \[\Gamma_{pO_2} = \frac{pO_2}{\xi}\] with \(\xi = 2.6\) bar\cdot s

Typical decay time: 13 s for \(pO_2\) of 200 mbar

Saam, Happer & Middleton; \textit{PRA} 52, 862 (1995)
Gas Exchange

- Ventilation/Perfusion Ratio
 - V/Q
 - Regulate gas exchange across the alveolar-capillary barrier

- Diffusion lung carbon monoxide (DLCO)

 Pulmonary perfusion

 Alveolar surface area (Emphysema)
Example Traces

\[pO_2(t) = pO_2 - R t \]

- \(pO_2 = 100 \text{ mbar}, R = 0 \)
- \(pO_2 = 150 \text{ mbar}, R = 0 \)
- \(pO_2 = 200 \text{ mbar}, R = 0 \)
- \(pO_2 = 150 \text{ mbar}, R = -2 \text{ mbar/s} \)

Dependent on \(pO_2 \)

and

Dependent on ODR

Need large SNR
Multi-Slice Rabbit Data

Slice 1
Slice 2
Slice 3
Slice 4
Slice 5
Slice 6

Static 3He

V_A/Q

V_A/Q Hist

Counts
0 2 4 6 8 10 12

02/10/05
University of Pennsylvania
Outline

• Background
 – Hyperpolarization
 – Consequences

• Spin relaxation mechanisms
 – T1 relaxation mechanisms
 • Hyperpolarized Noble Gases
 • Hyperpolarized 13C Metabolites

• Correcting/exploiting signal decay mechanisms for imaging
 – Flip angle decay and correction
 – Oxygen induced decay and mapping
 – Diffusion signal decay
 – 13C compounds and metabolic enzyme activity perfusion
Apparent Diffusion in Emphysema

ADC\textsubscript{Normal}

ADC\textsubscript{Diseased}

Leonhardt, 1986
Lung Microstructure

- Diffusion weighted imaging can provide structural information

Fain et al. Radiology 2006
Diffusion Weighting Gradient

Each measurement represents an entire volume

$q = \frac{\gamma G}{2\pi} (\delta - \varepsilon) \sqrt{\frac{\Delta - \delta / 3}{\Delta + \delta}}$

Correction term for $\delta \sim \Delta$.

Lori et at. JMR 2003
Retrospective Correction

Under-sampled acquisition

Projecions in plane

Diffusion Weighting

Projection number

Interleave DW

Use these unweighted images to correct for pO₂ and RF

q, mm⁻¹

0 0.18 0 0.35 0 0.54 0 0.73 0 0.91 0 1.1 0 1.3 0 1.5
RF and T_1 correction

RF and pO_2 are biggest sources of decay

Both vary spatially \rightarrow pixelwise correction

Fit each pixel in the unweighted images to:\n
$$S_n = S_0 \ K^n$$

where,

$$K = \cos(\alpha) \ \exp(-TR/\ T_1)$$

Then correct all the images using the map of K.

\(^1\) Shanbhag et al. JMRI 2006
Regional Correction Map

Phantom validation

Methods

PVC and 290 μm acetal plates

Optical scan of plates

Photo of inside the phantom. End cap removed.

X_{RMS} map

Single slice of 3D image

ROI X_{RMS}

1390 (80) μm

126 (40) μm

Ideal X_{RMS}

1373 μm

118 μm
Comparison of Diffusion Maps

Diffusion length X_D

9 year old
No asthma or HRV/wheeze

10 year old
Asthmatic

9 year old
HRV/wheeze before 3rd birthday

9 year old
Asthma & HRV/wheeze

175 μm

450 μm
Micro-Structure Dimension

$p = 0.009$

$p = 0.02$

$p = 0.004$

for equivalence of “both” and “neither”
Outline

• Background
 – Hyperpolarization
 – Consequences

• Spin relaxation mechanisms
 – T1 relaxation mechanisms
 • Hyperpolarized Noble Gases
 • Hyperpolarized 13C Metabolites

• Correcting/exploiting signal decay mechanisms for imaging
 – Flip angle decay and correction
 – Oxygen induced decay and mapping
 – Diffusion signal decay
 – 13C compounds and metabolic imaging
MR Spectroscopy and Chemical Shift Imaging (CSI)

Fourier Transform

Time domain

Frequency domain

FID t

FT

Pyruvate

Lactate

Alanine

Lac

Ala

Pyr

Spectrum
Chemical Shift Imaging (CSI)

3 spatial dimensions + spectral + time = 5 dimensions
IDEAL Results in Normal Liver (Mouse)

1 s scan
FOV = 10cm
Thickness = 2.5cm
TR = 25 ms
ΔTE = 0.74 ms
Multi-echo readout with flyback gradient, 10 echoes

Proton reference

Lactate x4
Pyr-H₂O x4

Alanine x4
Pyruvate
Gyromagnetic Ratio and Consequences

- γ ratio of approximately 4 for carbon and proton:
 - $\gamma^{1}H = 42.576 \text{ MHz/T}$
 - $\gamma^{13}\text{C} = 10.705 \text{ MHz/T}$

- $k(t) = \gamma \int G(t) dt$

- Affects:
 - Detected signal strength
 - k-space navigation
 - RF excite profiles
Consideration: Field of View and γ

$\text{FOV} \ y = 1/\Delta ky$

$k(t) = \gamma \int G(t) \, dt$

X Gradient

Y Gradient
Radial was used to allow a large matrix size before the 13C γ reduction.

Multi echoes are acquired for spectral imaging.
Consideration: Reconstruction

Readout Trajectory Proton k-space FT Proton Image

Carbon k-space FT Carbon Image

Applications: Motion Correction

Initial	Intermediate	Motion Corrected
Proton | |
Carbon | |

Simultaneous 1H/13C Acquisition

- Sequential Gadolinium injection simultaneously affects 1H signal
 - Perfusion and vascularity
 - Gadolinium concentration (Cron, 1999)

\[T_{1a} = \frac{-TR}{\ln \left(1 - \frac{I_a}{I_b} \left(1 - e^{-\frac{TR}{T_{1b}}} \right) \right) } \]

Dynamic image I_a
Known T_1 dynamic image I_b
Known T_1 map T_{1b}

Simplification from Cernicanu et al. 2006

Peterson, ISMRM 2010
Hyperpolarized 13C experiments

$$\text{Signal}_{\text{acquired}} = \text{Signal}_{\text{vasculature}} + \text{Signal}_{\text{extracellular}} + \text{Signal}_{\text{intracellular}}$$

No contrast between compartments

- Necessitates a simplified kinetic model with apparent rate constants
- Prohibits direct measurement of intracellular metabolism
Proposed approach: Isolating intracellular signal with gadolinium

- The decay rate of the ^{13}C spins will increase within the compartments containing Gd:
 - Vascular space in the brain
 - Vasculature and extracellular/extravascular space elsewhere

Inference of peaks from left to right:

1. intracellular lactate,
2. extracellular pyruvate hydrate,
3. intravascular pyruvate hydrate,
4. intracellular alanine,
5. extracellular pyruvate (the reference peak),
6. intravascular pyruvate, and
7. Urea reference material.
Hyperpolarized 13C has been applied to:

- Perform angiography with high contrast1,2
- Measure pH in tumors3
- Give indicator to treatment response6
- Measure cardiac ischemia5
- Measure cellular transport rates4
- Display metabolic response to hypoxia4

1Mansson et al. 2006 2Ishii et al. 2007 3Gallagher et al. 2008 4Harris et al. 2009 5Golman et al. 2008 6Day et al. 2007
Background on cellular metabolism

Oxidative vs. Anaerobic Glycolysis

Normal cells
- Oxidative Respiration (mitochondria)
- Glycolysis (cytosol)
- Aerobic Respiration

Tumor cells
- Glycolysis (cytosol)
- Anaerobic Respiration (cytosol)

Metabolic profile
- Normal cells: 60% Oxidative Respiration, 40% Glycolysis
- Tumor cells: 80% Glycolysis, 20% Anaerobic Respiration

Differentiated tissues
- In the presence of oxygen

Tumor cells
- In the absence of oxygen, with mitochondrial disorders

Mazurek, 2010
UCSF Press Release (RSNA)

“New prostate cancer imaging shows real-time tumor metabolism”
Improved approach: spectral spatial excitation

- Again, each species is alternately excited.
 - Pyruvate: 10° flip
 - Lactate: 30° flip

- New features
 - Spectral spatial excitation
 - Low bandwidth (2 kHz)
 - Centric encoding
 - 4 echoes (they’re free)

- Coronal 40 x 40 FOV
- 10 mm slice thickness
- 16 x 16 matrix
Images zero-filled to 128 x 128

- Note: Lactate was chemically shifted by $\frac{1}{4}$ FOV. Discontinuity in images reflects a corrective circular shift.
Imaging 7 days after left ureteral obstruction

- Images acquired at t = 20 seconds
- Mouse was fasted for 6 hours prior to imaging
Summary

• Hyperpolarized contrast agents provide multiple sources of contrast for functional studies
 – Noble gas applications to obstructive lung disease
 – 13C metabolites in cancer and other diseases of metabolism

• Challenging but increasing success in quantitative measurement of in vivo structure and function

• Increasing use in phenotyping disease and monitoring therapy, especially in the context of soft tissue anatomy
Acknowledgements

- Medical Physics
 - Kevin Johnson, PhD

- Allergy and Immunology
 - Ron Sorkness, PhD
 - Rob Lemanske, MD
 - Nizar Jarjour, MD
 - William Busse, MD

- Funding:
 - The Hartwell Foundation
 - Larry and Preston Smead
 - Fred Dombrose
 - Craig Jackson
 - The Hartwell Foundation Board
 - NIH/NHLBI R01 HL080412

- GE Healthcare
 - He-3 Polarizer (Helispin)
 - Craig Kornegay

 - Technical Assistance
 - Jim Holmes, PhD
 - Jan Wolber, PhD
 - Tim Skloss

- Radiology
 - Scott Nagle, MD
 - Mark Schiebler, MD
 - Tom Grist, MD

- RN coordinator
 - Jan Yakey, RN
 - Beth Anderson RN,

- Research Technologists
 - Kelli Hellenbrand
 - Sara Pladziewicz
Thank You!

Fain Lab 2010
Acknowledgements

Colleagues:

- Grace Parraga, PhD, Robarts Imaging
- Jim Wild, University of Sheffield
- John Owers-Bradley, University of Nottingham
- PHeLINet Partners: University of Mainz, University of Sheffield, University of Copenhagen, University of Lyon, University of Madrid, University of Paris-Sud
- Tally Altes, MD, University of Virginia
- Chengbo, Wang, PhD, University of Virginia
- Rahim Rizi PhD, University of Pennsylvania
- Dimitri Yablonskiy, PhD, Washington University, St. Louis
- Per Akeson, MD PhD, Malmo University Hospital Sweden
- Rob Lemanski, MD, University of Wisconsin, Madison
- William Busse, MD, University of Wisconsin, Madison
- Dan Vignerom PhD, John Kurhanewicz MD, and Sarah Nelson PhD, UCSF

Colleagues: