Using GNUsmail to Compare Data Stream Mining Methods for On-line Email Classification

José M. Carmona-Cejudo1, Manuel Baena-García1, José del Campo-Ávila1, João Gama2, Albert Bifet3 and Rafael Morales-Bueno1

1Universidad de Málaga, Spain
2University of Porto, Portugal
3University of Waikato, New Zealand

Manuel Baena-García
Castro Urdiales, October 2011
Email mining

- Spam detection: a two-class problem usually solved with bayesian classifiers.
- Email classification: a multi-class problem to sort email into folders.

Email classification approaches

- Batch learning. The whole dataset is available before the beginning of the learning process.
- Online learning. Data are continually being received and processed over time.

Hypothesis

There is a lack of systems to compare and evaluate different machine learning models for email classification.
Email mining

- Spam detection: a two-class problem usually solved with Bayesian classifiers.
- Email classification: a multi-class problem to sort email into folders.

Email classification approaches

- Batch learning. The whole dataset is available before the beginning of the learning process.
- Online learning. Data are continually being received and processed over time.

Hypothesis

There is a lack of systems to compare and evaluate different machine learning models for email classification.
Introduction

Context

Email mining
- Spam detection: a two-class problem usually solved with bayesian classifiers.
- Email classification: a multi-class problem to sort email into folders.

Email classification approaches
- Batch learning. The whole dataset is available before the beginning of the learning process.
- Online learning. Data are continually being received and processed over time.

Hypothesis
There is a lack of systems to compare and evaluate different machine learning models for email classification.
GNUsmail is a framework that allows to compare different email classification algorithms.

We introduce next improvements to GNUsmail:

- to carry out *replicable experimentation*.
- to evaluate data stream mining methods by using:
 - sliding windows.
 - fading factors.
- to use recently proposed statistical tests to compare the performance of online algorithms.
GNUsmail: Architecture and Characteristics

http://code.google.com/p/gnusmail/

Characteristics

- Open source framework for online adaptive email classification.
- It contains modules for reading email, preprocessing text and learning.
- The email messages are read as the model is built.

Architecture

- **Reading email module** can obtain email messages from local filesystem or remote IMAP server.
- **Text processing module** based on filters that extract attributes from emails.
- **Learning module** into which new algorithms, methods and libraries can be integrated.
Text Preprocessing Module

Structure

- A pipeline of (linguistic) operators which extract relevant features from every mail.
- Some ready-to-use filters are implemented as part of the GNUsmail core, and new ones can be incorporated.

Filters

- Relevant words based on the ranking provided by the tf-idf function.
- Sender, CC.
- Domain of sender.
- Capital letters proportion.
- Language.
- Number of receivers.
Learning Module

Structure

Based on WEKA and MOA frameworks:

- WEKA methods are used with small datasets in environments without time and memory restrictions.
- MOA methods are used in more demanding problems.

WEKA methods

- Multinomial Naïve Bayes
- IBk, k-nearest neighbours
- NN-ge (Nearest Neighbour with Generalised Exemplars)

MOA methods
Learning Module

Structure
Based on WEKA and MOA frameworks:

- WEKA methods are used with small datasets in environments without time and memory restrictions.
- MOA methods are used in more demanding problems.

Weka Methods

MOA Methods
GNUsmail uses MOA by including its tools for evaluation, classification, and drift detection.

- HoeffdingTree
- OzaBag, OzaBoost
- DDM
In data stream contexts, neither cross-validation nor other sampling procedures are suitable for evaluation.

Prequential measures
- A prediction is made for each new example.
- Once the real class is known we update a cumulative loss function.

Forgetting mechanisms
- Sliding windows.
- Fading factors (preferred method).
Comparing the performance

Adapted McNemar statistic (M)

$$M_i = \text{sign}(a_i - b_i) \times \frac{(a_i - b_i)^2}{a_i + b_i}$$

- $a_i = f_i + \alpha \cdot a_{i-1}$
- $b_i = g_i + \alpha \cdot b_{i-1}$
- f_i: 1 iff the example i is misclassified by the first classifier and not by the second one (0 otherwise).
- g_i: 1 iff the example i is misclassified by the second classifier and not by the first one (0 otherwise).
Experimental Setup

Initial setup
- Based on ENRON email dataset.
- We have selected seven specific users.
- We have used only topic folders with more than two messages.
- GNUsmail checks the availability of data, offering to download it.
- The messages are analyzed in chronological order.

Attributes
- Sender username, sender domain.
- Number of recipients, body length, capital letters proportion, size of email, subject length.
- Most relevant words.
Experimental Setup

Algorithms
- OzaBag over NNge, using DDM for concept drift detection.
- NNge.
- Hoeffding Trees.
- Majority class.

Output
- GNUsmail plots...
 - the prequential-based metrics
 - and the adapted McNemar test
 ... to visually analyse the differences in performance.
Results

Folder-wise prequential accuracies with bagging of DDM and NN-ge

<table>
<thead>
<tr>
<th>Folder</th>
<th>Correct/Total</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>beck-s (101 folders)</td>
<td>1071/1941</td>
<td>55.18%</td>
</tr>
<tr>
<td>europe</td>
<td>131/162</td>
<td>80.86%</td>
</tr>
<tr>
<td>calendar</td>
<td>104/123</td>
<td>84.55%</td>
</tr>
<tr>
<td>recruiting</td>
<td>89/114</td>
<td>78.07%</td>
</tr>
<tr>
<td>doorstep</td>
<td>49/86</td>
<td>56.97%</td>
</tr>
<tr>
<td>kaminsky-v (41 folders)</td>
<td>1798/2699</td>
<td>66.62%</td>
</tr>
<tr>
<td>universities</td>
<td>298/365</td>
<td>81.64%</td>
</tr>
<tr>
<td>resumes</td>
<td>420/545</td>
<td>77.06%</td>
</tr>
<tr>
<td>personal</td>
<td>154/278</td>
<td>55.4%</td>
</tr>
<tr>
<td>conferences</td>
<td>163/221</td>
<td>73.76%</td>
</tr>
<tr>
<td>lokay-m (11 folders)</td>
<td>1953/2479</td>
<td>78.78%</td>
</tr>
<tr>
<td>tw_commercial_group</td>
<td>1095/1156</td>
<td>94.72%</td>
</tr>
<tr>
<td>corporate</td>
<td>345/400</td>
<td>86.25%</td>
</tr>
<tr>
<td>articles</td>
<td>152/232</td>
<td>65.51%</td>
</tr>
<tr>
<td>enron.t_s</td>
<td>86/176</td>
<td>48.86%</td>
</tr>
<tr>
<td>williams-w3 (18 folders)</td>
<td>2653/2778</td>
<td>95.5%</td>
</tr>
<tr>
<td>schedule_crawler</td>
<td>1397/1398</td>
<td>99.91%</td>
</tr>
<tr>
<td>bill_williams_iii</td>
<td>1000/1021</td>
<td>97.94%</td>
</tr>
<tr>
<td>hr</td>
<td>74/86</td>
<td>86.05%</td>
</tr>
<tr>
<td>symsees</td>
<td>74/81</td>
<td>91.36%</td>
</tr>
</tbody>
</table>
Replicable Experimentation

RESULTS FOR BECK-S

![Prequential based results for beck-s](image)

(a) Prequential error

(b) Fading factors preq. ($\alpha = 0.995$)

FIGURE: Prequential based results for beck-s
RESULTS FOR KITCHEN-L

Figure: Prequential based results for kitchen-l

(a) Prequential error

(b) Fading factors preq. (\(\alpha = 0.995\))
Adapted McNemar test

Figure: OzaBag vs. NN-ge using fading factors with $\alpha = 0.995$
Adapted McNemar test

Figure: OzaBag vs. Hoeffding tree using fading factors with $\alpha = 0.995$
Conclusion and Future Work

- We have presented different methods to evaluate data stream algorithms.
- We have incorporated to GNUsmail recently proposed evaluation methods.
- Such evaluation methods improve prequential error measures.
- McNemar test is adequate as a tool to compare the online performance in the domain of email classification.
- Current online learning algorithm implementations needs to known all the attributes before the learning itself.
- Future methods should support online addition of new features.
Using GNUsmail to Compare Data Stream Mining Methods for On-line Email Classification

José M. Carmona-Cejudo1, Manuel Baena-García1, José del Campo-Ávila1, João Gama2, Albert Bifet3 and Rafael Morales-Bueno1

1Universidad de Málaga, Spain
2University of Porto, Portugal
3University of Waikato, New Zealand

Manuel Baena-García
Castro Urdiales, October 2011