Roadmap "ICT for Sustainable Freight Transport and Logistics

Jannicke Baalsrud Hauge*,
*Bremer Institut für Produktion und Logistik GmbH
Purpose

- Provides strategic guidelines:
 - Future research and development activities in the ICT for transport logistics field,
- Ensuring the long-term sustainability
 - Environmental,
 - Economic and
 - Societal
- Contribute to the EU Research and Innovation
 - Common Strategic Framework (2013 – 2020)
Scope until 2030

- Identify challenges to be overcome by ICT for freight transport and logistics to increase the sustainability.

- How to overcome the challenges
 - research,
 - development and
 - pre-competitive deployment expected in key technological areas.
Vision

<table>
<thead>
<tr>
<th>Policy objectives / Industry goals</th>
<th>Improvements by 2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co-modal freight corridors.</td>
<td>30% of road freight over 300 km should shift to other modes such as rail or waterborne transport by 2030, and more than 50% by 2050, facilitated by efficient and green freight corridors.</td>
</tr>
<tr>
<td>Zero-emissions urban logistics.</td>
<td>Achieve essentially CO2-free city logistics in major urban centres by 2030.</td>
</tr>
<tr>
<td>Low-carbon freight transport services (business perspective)</td>
<td>Significant market-share for low-carbon services for environmentally concerned customers, taking into account emissions alongside price and speed of transport.</td>
</tr>
<tr>
<td>Increased logistics efficiency</td>
<td>Holistic approach for supply chain, incl. All modes and all stakeholder</td>
</tr>
<tr>
<td>European multimodal transport information, management and payment system.</td>
<td>Increased reliability of transport schedules by 50%, as measured by average time loss, (scheduled time vs. real travel time).</td>
</tr>
<tr>
<td>End-to-end supply chain security</td>
<td>Make sure that the EU is a world leader in safety and security of transport in all modes of transport.</td>
</tr>
<tr>
<td>Cooperative vehicles and infrastructures.</td>
<td>The large majority (80%) of vehicles and infrastructures will be cooperative, supporting safe and optimal utilization of transport infrastructures and improvement of driver’s behaviour.</td>
</tr>
</tbody>
</table>
Challenges: Co-Modal freight corridors

- **State-of-the art**
 - Little evidence that investments in EU research over the last 15 years has contributed to moving cargo from road to other transport modes
 - Rail transport has received 81% of the TEN-T budget of 400 billion Euro. Growth in freight on rail estimated to be approximately 10%

- **Improvements**
 - Many stakeholders need to cooperate efficiently ➔ Interoperability
 - Making the best possible use of the infrastructure
 - Need for new solutions that naturally chooses green alternatives
 - Making the best possible use of each vehicle moving in the infrastructure
Challenges: Co-Modal freight corridors

- Main ICT-related Challenges
 - Introduce an efficient Soft Infrastructure

 Common Framework

 - Introduce the concept of Corridor Management

 On top of ITS-TAF/TSI, RIS, and e-Maritime
Challenges: Zero Emission Urban Logistics

- **State-of-the art**
 - Urban transport is dominated by road transport
 - Rapid development in motor and car technologies
 - Battery (electrical vehicles), gas motors, hybride motors
 - The drivers are controlled by two different objectives
 - More efficient traffic (traffic management)
 - More efficient transport (freight distribution management)
 - Low loading factor

- **Improvements**
 - Harmonised control of vehicles taking into account both traffic management and freight distribution management
 - Increase in load factor
 - Utilisation of the shorter range for fully electrical vehicles

- **Main ICT – related challenges**
 - Connection of the vehicles and the road infrastructure
 - Interoperability between traffic management and freight distribution management systems
 - Connection of goods information and car information => Total set of information about cars transporting in urban areas
Challenges: Low-Carbon Freight transport services

- **State-of-the art**
 - Model shift solution
 - Brokerage services
 - Green deliveries

- **Improvements**
 - largest share of door-to-door freight transport services optimized for emissions reduction, well speed, reliability and price.

- **Main ICT – related challenges**
 - Standard indicators and methods for environmental performances of freight transport services
 - Multi-actor, multi-criteria freight transport planning
 - Cooperative environment for logistics information services
Challenges: European Multi-Modal transport information, management and payment system

- **State-of-the art**
 - Many platforms and interoperable solutions for information exchange
 - Trend towards better collaboration and information sharing in ecosystems
 - Existing standards for information exchange – Pan European projects for electronic invoicing, etc.
 - xRM for “Anything Relationship Management”
 - Cloud computing / Internet of Services / Internet of Things / Internet of Content - convergence

- **Improvements**
 - Adoption of technology
 - Logistics as dynamic ecosystems - More actors enrollment (communities, non-hierarchical networks)
 - New tools and services for intelligent data capturing, analysis and information sharing

- **Main ICT – related challenges**
 - Wireless Sensor networks adoption in Logistics industry - Integration of intelligent sensors
 - Cloud (Private/ Public) interoperability
 - Federated Open Platforms in Logistics – Services easily configured, discovered, composed and used by companies with different IT maturity levels
Challenges: End-to-End Security

- Credentialing of participants in the supply chain.
- Screening and validating of the contents of cargo being shipped.
- Advance notification of the contents to the destination country.
- Ensuring the security of cargo while in-transit via the use of locks and tamper-proof seals.
- Inspecting cargo on entry.

State-of-the art
- Tracking and tracing partly possible, SCM software available for some stakeholders
- Transport means identification
- Information gaps along the chain,
- Solutions for ICT security available

Improvements
- ITS: information and goods flows synchronous
- Web based information systems as prototypes available

Main ICT – related challenges
- Standards
- Different regulation
- Hardware/Software cost, maintenance
- Interconnection of different solutions
- Challenges reg. security and multi-modal
Challenges: Cooperative Vehicles and Infrastructures

- **State-of-the-art**
 - ITS services active road safety and traffic efficiency
 - Service networks for subscribing and publishing of goods information for all stakeholders
 - Mobile systems with real-time connection to infrastructure and goods

- **Improvements**

<table>
<thead>
<tr>
<th>Environmental</th>
<th>Economic</th>
<th>Societal</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITS services infrastructure</td>
<td>Traffic flow optimizations</td>
<td>Increased transport efficiency</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lower cost due to fewer accidents and increased transport work.</td>
</tr>
<tr>
<td>Fully developed and integrated service network</td>
<td>Accurate emission calculation based on actual transport work.</td>
<td>Possibilities for third party service providers to deliver services</td>
</tr>
<tr>
<td></td>
<td>Linking transported goods with environmental impact</td>
<td>Reduced administration as part of total transport cost.</td>
</tr>
<tr>
<td>Advanced mobile trucking systems</td>
<td>Improved routing through reduced erroneous driving and higher visibility.</td>
<td>Reduced time duration per transport</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reduced administration.</td>
</tr>
</tbody>
</table>

- **Main ICT – related challenges**
 - Single technology testing and validation replaced by sub-system evaluation
 - Merge currently existing domains to enable information sharing, aiming towards openness.
 - Agreement on concepts, services and stakeholder involvement
 - Resolving the “Chicken-and-egg”-problem of ICT investments
Challenges: Increased Logistic Efficiency

- **State-of-the art**
 - Mode specific systems
 - Mode specific regulations
 - Inefficiency
 - Lack of seamless information flow

- **Improvements**
 - Shared infrastructure
 - SOA for better data exchange
 - Implementation of technologies

- **Main ICT – related challenges**
 - Standardization
 - Hardware/software related
Contributors to the current version of the Roadmap

<table>
<thead>
<tr>
<th>Freight Corridors</th>
<th>A. Gehlhaar, T. Katsoulakos, J.T. Pedersen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero-emissions urban logistics</td>
<td>H. Westerheim, M. Huschebeck, Z. Jeftic</td>
</tr>
<tr>
<td>Low carbon services (business perspective)</td>
<td>R. Frindik and P. Paganelli</td>
</tr>
<tr>
<td>European multi-modal information</td>
<td>K. Kalaboukas, T. Katsoulakos and J.T. Pedersen</td>
</tr>
<tr>
<td>End to end supply security</td>
<td>G.R. Zomer, K. Kalaboukas (ICT), T. Katsoulakos, F. Knoors, P. Sonnabend, J. Baalsrud Hauge, N. Meyer-Larsen</td>
</tr>
<tr>
<td>Cooperative vehicles and infrastructures</td>
<td>Henrik Sternberg, Z. Jeftic,</td>
</tr>
<tr>
<td>Increased logistics efficiency</td>
<td>J. Schumacher, G.R. Zomer (only reviewing)**</td>
</tr>
</tbody>
</table>
Thank you for your contribution

Contact:

Jannicke Baalsrud Hauge
baa@biba.uni-bremen.de