High-Coverage Extraction of Semantic Assertions from Text

Mitja Trampuš, Dunja Mladenič
AI Lab, Jožef Stefan Institute
The Task

- Input: unstructured text
- Output: semantic assertions made in the text

Simplification: extract only the simplest / most salient assertions

Example:
“John rode a bike to work yesterday.” → ride(John, B), isa(B, bike)
This is a sad panda. The panda is sad because nobody knows how to extract most of the assertions while maintaining high accuracy.
The Compromise

existing systems (NELL, SOFIE, …)

our goal

precision

recall
BACKGROUND KNOWLEDGE

(Yes / No ?)
Ontology: CYC

- A large general-purpose ontology
- Uses predicate logic in line with the \(\text{ride}(\text{John}, B), \text{isa}(B, \text{bike}) \) example

Problem: No training data for expressing text in Cyc logic. Has a natural language component, but coverage is poor beyond single words
The Glue: FrameNet

- A database / shallow ontology of *semantic frames* and their *roles*. Example:
 \[\text{John rode a bike to work yesterday} \]

 \begin{tabular}{ccc}
 Mover & Means & Destination \\
 \end{tabular}

- **Pro:** Has training data (sentences hand-tagged with frames and role fillers)

- **Con:** Ontology of frames and roles is too shallow and sparse for general-purpose stuff.
FrameNet and Cyc

- **Idea: the best of both worlds**
 First annotate text with FrameNet (training data!), then map annotations to Cyc (rich ontology!)
Annotating text with FrameNet frames and roles

SEMANTIC ROLE LABELING (SRL)
SRL: Standard Breakdown into Tasks

- Find which frames appear in a sentence
 - Right now: naïve, recall-oriented: if a sentence contains a word W that could evoke a frame F, assume F appears in the sentence
- Detect role boundaries (= identify phrases that fill a role)
- Classify roles (= decide *which* roles they fill)

The last two steps are often done together; we follow this approach as well
SRL: Role Detection and Classification

Text → Charniak parser → Parse trees → For every tree node: feature extraction → Features → (classical supervised learning; SVM) → Model

Feature examples:
- lemma of frame-evoking word
- Penn Treebank tag of node
- parent node’s tag
- passive/active voice of sentence.
- POS tag of node’s head word.
MAPPING: FRAMENET → CYC
Mapping Frames

- cca 600 “interesting” frames
 - action-related ones that map to Cyc nicely
- the mapping was done in a semi-supervised manner
 - use Cyc natural language components to identify possible matches for a frame (based on its frame-evoking words)
 - choose the best candidate by hand
Mapping Roles

- Each frame has 5-10 roles, so several roles to map – too much work for doing it by hand.
- The mapping is done automatically, by computing similarity between FrameNet roles and Cyc roles.
 - Similarity measure based on BOW of roles’ descriptions and on their prevalent usage (subject or object or neither).
Mapping Role-Fillers

- Essentially the Word Sense Disambiguation task
- Currently: a quick solution; a separate WSD module being prepared at the department
- Two-step approach:
 - Identify the head word of a role filler (hand written rules)
 - Use Cyc’s NLP predicates to map it onto
RESULTS
Results: the Numbers

• Biggest issue: long pipeline. Accuracies (approximate):
 • Tree parsing: 90%
 • Semantic Role Labeling: 65%
 • FrameNet-Cyc Alignment: 45%
 • Cannot do better than 75% due to discrepancies between the two ontologies
 • Word Sense Disambiguation: 60%
 • Not counting personal pronouns (he, she, him, …)
To understand and appreciate the Bush administration's policy regarding Israeli Prime Minister Sharon's disengagement plan, we must briefly reexamine the record. For three and a half years now, the administration's attitude toward the Israeli-Palestinian conflict/peace process has been characterized by high rhetoric and little action.

Facts from the first sentence:
1. ObjectImproved #$Comprehending* #$OrganizationPolicy*)
2. performedBy #$Comprehending* (ObjectDenotedByFn "we")
3. evaluationInput $Evaluating* #$OrganizationPolicy*)
4. performedBy #$ExercisingAuthoritativeControlOverSomething* (ObjectDenotedByFn "we")
5. performedBy #$PurposefulAction* (ObjectDenotedByFn "Sharon")

Facts from the second sentence:
1. eventOccursAt #$DescribingSomething* #$Attitude*)
2. senderOfInfo #$DescribingSomething* #$Action*)
3. performedBy #$ExercisingAuthoritativeControlOverSomething* (ObjectDenotedByFn "constitutes")
QUESTIONS?

More questions?
mitja.trampus@ijs.si